Current concepts of idiopathic pulmonary fibrosis: focus on biomarkers
https://doi.org/10.18093/0869-0189-2017-27-1-56-64
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with a poor prognosis. In recent years, the development of international diagnostic criteria based on clinical, physiological, radiological, and histopathological appearances, improved diagnosis of IPF. However, currently available clinical data do not accurately predict the course of the disease, which can vary from a slowly progressing to rapidly progressive, and, in 5% of cases, is punctuated by episodes of rapid acute exacerbation. These challenges highlight the need for the development and validation of diagnostic biomarkers specific to IPF and prognostic biomarkers of future disease behavior to guide treatment decisions, including referral for transplant. The recent approval of pirfenidone and nintedanib and the identification of new potential therapeutic targets have created an urgent need for theragnostic markers, i.e. biomarkers able to assess, ideally at an early stage, therapeutic response to a given drug. This will avoid the side effects and increase efficacy of treatment. In addition, the currently available methods are not able to identify the IPF in the early stage to predict the course of disease, and to assess response to antifibrotic therapy. Recent advances in understanding the multiple interrelated pathogenic pathways underlying IPF have identified various molecular phenotypes resulting from complex interactions among genetic, epigenetic, transcriptional, post-transcriptional, metabolic, and environmental factors. The development and validation of diagnostic and prognostic biomarkers are necessary to enable a more precise and earlier diagnosis of IPF and to improve prediction of future disease behavior.
About the Author
E. Kh. AnaevRussian Federation
Doctor of Medicine, head of Laboratory of Non-invasive Diagnostic Methods, Clinical Division
References
1. Hutchinson J., Fogarty A., Hubbard R., McKeever T. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur. Respir. J. 2015; 46 (3): 795–806. DOI: 10.1183/09031936.00185114.
2. King T.E., Bradford W.Z., Castro-Bernardini S. et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014; 370 (22): 2083–2092. DOI: 10.1056/NEJMoa1402582.
3. Richeldi L., du Bois R.M., Raghu G. et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014; 370 (22): 2071–2082. DOI: 10.1056/NEJMoa1402584.
4. Woodcock H.V., Maher T.M. The treatment of idiopathic pulmonary fibrosis. F1000Prime Rep. 2014; 6: 16. DOI: 10.12703/P6-16.
5. Pathak R.R., Davé V. Integrating omics technologies to study pulmonary physiology and pathology at the systems level. Cell Physiol. Biochem. 2014; 33 (5): 1239–1260. DOI: 10.1159/000358693.
6. Raghu G., Collard H.R., Egan J.J. et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 2011; 183 (6): 788–824. DOI: 10.1164/rccm.2009-040GL.
7. Чучалин А.Г., Авдеев С.Н., Айсанов З.Р. и др. Диагностика и лечение идиопатического легочного фиброза. Федеральные клинические рекомендации. Пульмонология. 2016; 26 (4): 399–419. DOI: 10.18093/0869-0189-2016-26-4-399-419. / Chuchalin A.G., Avdeev S.N., Aysanov Z.R., et al. Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis. Federal Guidelines. Pul'monologiya. 2016; 26 (4): 399–419 (in Russian). DOI: 10.18093/0869-0189-2016-26-4-399-419.
8. Hutchinson J.P., Fogarty A.W., McKeever T.M., Hubbard R.B. In-hospital mortality after surgical lung biopsy for interstitial lung disease in the United States. 2000 to 2011. Am. J. Respir. Crit. Care Med. 2016; 193 (10): 1161–1167. DOI: 10.1164/rccm.201508-1632OC.
9. Ryerson C.J., Urbania T.H., Richeldi L. et al. Prevalence and prognosis of unclassifiable interstitial lung disease. Eur. Respir. J. 2013; 42 (3): 750–757. DOI: 10.1183/09031936.00131912.
10. Tomassetti S., Wells A.U., Costabel U. et al. Bronchoscopic lung cryobiopsy increases diagnostic confidence in the multidisciplinary diagnosis of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2016; 193 (7): 745–752. DOI: 10.1164/rccm.201504-0711OC.
11. King T.E., Pardo A., Selman M. Idiopathic pulmonary fibrosis. Lancet. 2011; 378 (9807): 1949–1961. DOI: 10.1016/S0140-6736(11)60052-4.
12. Ahluwalia N., Shea B.S., Tager A.M. New therapeutic targets in idiopathic pulmonary fibrosis. Aiming to rein in runaway wound-healing responses. Am. J. Respir. Crit. Care Med. 2014; 190 (8): 867–878. DOI: 10.1164/rccm.201403-0509PP.
13. Wolters P.J., Collard H.R., Jones K.D. Pathogenesis of idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 2014; 9: 157–179. DOI: 10.1146/annurev-pathol-012513-104706.
14. Maher T.M. Beyond the diagnosis of idiopathic pulmonary fibrosis; the growing role of systems biology and stratified medicine. Curr. Opin. Pulm. Med. 2013; 19 (5): 460–465. DOI: 10.1097/MCP.0b013e328363f4b7.
15. du Bois R.M., Weycker D., Albera C. et al. Forced vital capacity in patients with idiopathic pulmonary fibrosis: test properties and minimal clinically important difference. Am. J. Respir. Crit. Care Med. 2011; 184(12): 1382–1389.
16. du Bois R.M., Albera C., Bradford W.Z. et al. 6-Minute walk distance is an independent predictor of mortality in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 2014; 43 (5): 1421–1429.
17. Ley B., Bradford W.Z., Weycker D. et al. Unified baseline and longitudinal mortality prediction in idiopathic pulmonary fibrosis. Eur. Respir. J. 2015; 45 (5): 1374–1381.
18. Kolb M., Collard H.R. Staging of idiopathic pulmonary fibrosis: past, present and future. Eur. Respir. Rev. 2014; 23 (132): 220–224. DOI: 10.1183/09059180.00002114.
19. Ley B., Brown K.K., Collard H.R. Molecular biomarkers in idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 2014; 307 (9): L681–691. DOI: 10.1152/ajplung.00014.2014.
20. Spagnolo P., Tzouvelekis A., Maher T.M. Personalized medicine in idiopathic pulmonary fibrosis: facts and promises. Curr. Opin. Pulm. Med. 2015; 21 (5): 470–478. DOI: 10.1097/MCP.0000000000000187.
21. Han M.K., Zhou Y., Murray S. et al. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir. Med. 2014; 2 (7): 548–556. DOI: 10.1016/S2213-2600(14)70069-4.
22. Jenkins R.G., Simpson J.K., Saini G. et al. Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. Lancet Respir. Med. 2015; 3 (6): 462–472. DOI: 10.1016/S2213-2600(15)00048-X.
23. Noth I., Zhang Y., Ma S.F. et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir. Med. 2013; 1 (4): 309–317.
24. Stock C.J., Sato H., Fonseca C. et al. Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis. Thorax. 2013; 68 (5): 436–441. DOI: 10.1136/thoraxjnl-2012-201786.
25. Stuart B.D., Lee J.S., Kozlitina J. et al. Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: an observational cohort study with independent validation. Lancet Respir. Med. 2014; 2 (7): 557–565. DOI: 10.1016/S2213-2600(14)70124-9.
26. Oldham J.M., Ma S.F., Martinez F.J. et al. TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2015; 192 (12): 1475–1482. DOI: 10.1164/rccm.201505-1010OC.
27. Daccord C., Maher T.M. Recent advances in understanding idiopathic pulmonary fibrosis. F1000Res. 2016; 5 (F1000 Faculty Rev): 1046. DOI: 10.12688/f1000research.8209.1.
28. Yang I.V., Schwartz D.A. Epigenetics of idiopathic pulmonary fibrosis. Transl Res. 2015; 165 (1): 48–60. DOI: 10.1016/j.trsl.2014.03.011.
29. Li P., Li J., Chen T. et al. Expression analysis of serum microRNAs in idiopathic pulmonary fibrosis. Int. J. Mol. Med. 2014; 33 (6): 1554–1562. DOI: 10.3892/ijmm.2014.1712.
30. Montgomery R.L., Yu G., Latimer P.A. et al. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol. Med. 2014; 6 (10): 1347–1356. doi: 10.15252/emmm.201303604.
31. Richards T.J., Kaminski N., Baribaud F. et al. Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2012; 185 (1): 67–76. DOI: 10.1164/rccm.201101-0058OC.
32. Moeller A., Gilpin S.E., Ask K. et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2009; 179 (7): 588–594. DOI: 10.1164/rccm.200810-1534OC.
33. Reilkoff R.A., Peng H., Murray L.A. et al. Semaphorin 7a+ regulatory T cells are associated with progressive idiopathic pulmonary fibrosis and are implicated in transforming growth factor-β1-induced pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2013; 187 (2): 180–188. doi: 10.1164/rccm.201206-1109OC.
34. Malli F., Bardaka F., Tsilioni I. et al. 8-Isoprostane levels in serum and bronchoalveolar lavage in idiopathic pulmonary fibrosis and sarcoidosis. Food Chem. Toxicol. 2013; 61: 160–163. DOI: 10.1016/j.fct.2013.05.016.
35. Hara A., Sakamoto N., Ishimatsu Y. et al. S100A9 in BALF is a candidate biomarker of idiopathic pulmonary fibrosis. Respir. Med. 2012; 106 (4): 571–580. DOI: 10.1016/j.rmed.2011.12.010.
36. Molyneaux P.L., Cox M.J., Willis-Owen S.A. et al. The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2014; 190 (8): 906–913. doi: 10.1164/rccm.201403-0541OC.
37. Saini G., Porte J., Weinreb P.H. et al. αvβ6 Integrin may be a potential prognostic biomarker in interstitial lung disease. Eur. Respir. J. 2015; 46 (2): 486–494.
38. Buckley S., Shi W., Xu W. et al. Increased alveolar soluble annexin V promotes lung inflammation and fibrosis. Eur. Respir. J. 2015; 46 (5): 1417–1429. DOI: 10.1183/09031936.00002115.
39. Song J.W., Do K.H., Jang S.J. et al. Blood biomarkers MMP-7 and SP-A: predictors of outcome in idiopathic pulmonary fibrosis. Chest. 2013; 143 (5): 1422–1429. DOI: 10.1378/chest.11-2735.
40. Nobakht M.Gh.B.F., Aliannejad R., Rezaei-Tavirani M. et al. The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers. 2015; 20 (1): 5–16. DOI: 10.3109/1354750X.2014.983167.
41. Xie N., Tan Z., Banerjee S. et al. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 2015; 192 (12): 1462–1474. DOI: 10.1164/rccm.201504-0780OC.
42. Konstantinidi E.M., Lappas A.S., Tzortzi A.S., Behrakis P.K. Exhaled breath condensate: Technical and diagnostic aspects. Sci. World J. 2015; 2015: 435160. DOI: 10.1155/2015/435160
43. Anaev E., Avdeev S., Cherniak A. et al. Exhaled breath condensate markers in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 2005; 26 (Suppl. 49): 334s.
44. Chow S., Thomas P.S., Malouf M., Yates D.H. Exhaled breath condensate (EBC) biomarkers in pulmonary fibrosis. J. Breath Res. 2012; 6 (1): 016004. DOI: 10.1088/1752-7155/6/1/016004.
45. Shimizu Y., Dobashi K., Sano T., Yamada M. ROCK activation in lung of idiopathic pulmonary fibrosis with oxidative stress. Int. J. Immunopathol. Pharmacol. 2014; 27 (1): 37–44. DOI: 10.1177/039463201402700106.
46. Psathakis K., Mermigkis D., Papatheodorou G. et al. Exhaled markers of oxidative stress in idiopathic pulmonary fibrosis. Eur. J. Clin. Invest. 2006; 36 (5): 362–367. DOI: 10.1111/j.1365-2362.2006.01636.x.
47. Rihák V., Zatloukal P., Chládková J. et al. Nitrite in exhaled breath condensate as a marker of nitrossative stress in the airways of patients with asthma, COPD, and idiopathic pulmonary fibrosis. J. Clin. Lab. Anal. 2010; 24 (5): 317–322. DOI: 10.1002/jcla.20408.
48. Ono E., Mita H., Taniguchi M. et al. Comparison of cysteinyl leukotriene concentrations between exhaled breath condensate and bronchoalveolar lavage fluid. Clin. Exp. Allergy. 2008; 38 (12): 1866–1874. DOI: 10.1111/j.1365-2222.2008.03108.x.
49. Montesi S.B., Mathai S.K., Brenner L.N. et al. Docosatetraenoyl LPA is elevated in exhaled breath condensate in idiopathic pulmonary fibrosis. BMC Pulm. Med. 2014; 14: 5. DOI: 10.1186/1471-2466-14-5.
50. Corradi M., Acampa O., Goldoni M. et al. Metallic elements in exhaled breath condensate of patients with interstitial lung diseases. J. Breath Res. 2009; 3 (4): 046003. DOI: 10.1088/1752-7155/3/4/046003.
51. Carpagnano G.E., Lacedonia D., Soccio P. et al. How strong is the association between IPF and lung cancer? An answer from airway's DNA. Med. Oncol. 2016; 33 (11): 119. DOI: 10.1007/s12032-016-0835-8.
52. Antoniou K.M., Hansell D.M., Rubens M.B. et al. Idiopathic pulmonary fibrosis: outcome in relation to smoking status. Am. J. Respir. Crit. Care Med. 2008; 177 (2): 190–194.
53. Johannson K.A., Vittinghoff E., Lee K. et al. Acute exacerbation of idiopathic pulmonary fibrosis associated with air pollution exposure. Eur. Respir. J. 2014; 43 (4): 1124–1131. DOI: 10.1183/09031936.00122213.
54. Lee J.S., Collard H.R., Anstrom K.J. et al. Anti-acid treatment and disease progression in idiopathic pulmonary fibrosis: an analysis of data from three randomized controlled trials. Lancet Respir. Med. 2013; 1 (5): 369–376. DOI: 10.1016/S2213-2600(13)70105-X.
55. Raghu G., Rochwerg B., Zhang Y. et al. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of idiopathic pulmonary fibrosis. An Update of the 2011 Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2015; 192 (2): e3–19. DOI: 10.1164/rccm.201506-1063ST.
56. Molyneaux P.L., Maher T.M. The role of infection in the pathogenesis of idiopathic pulmonary fibrosis. Eur. Respir. Rev. 2013; 22 (129): 376–381. DOI: 10.1183/09059180.00000713.
57. Egan J.J., Adamali H.I., Lok S.S. et al. Ganciclovir antiviral therapy in advanced idiopathic pulmonary fibrosis: an open pilot study. Pulm. Med. 2011; 2011: 240805. DOI: 10.1155/2011/240805.
58. Shulgina L., Cahn A.P., Chilvers E.R. et al. Treating idiopathic pulmonary fibrosis with the addition of co-trimoxazole: a randomized controlled trial. Thorax. 2013; 68 (2): 155–162. DOI:10.1136/thoraxjnl-2012-202403.
Review
For citations:
Anaev E.Kh. Current concepts of idiopathic pulmonary fibrosis: focus on biomarkers. PULMONOLOGIYA. 2017;27(1):56-64. (In Russ.) https://doi.org/10.18093/0869-0189-2017-27-1-56-64