Preview

PULMONOLOGIYA

Advanced search

Particularities of nitric oxide cycle in respiratory disease

https://doi.org/10.18093/0869-0189-2016-26-6-753-759

Abstract

This review describes unique components of nitric oxide (NO) cycle in humans. The NO cycle involves NOsynthase, NOsynthase independent component and oxidationreduction reactions. Substrates for NO synthesis could be nitric oxides, nitrite and nitrate anions, organic nitrates, and food nitrates and nitrites. A role of human microbiota has been discussed. A role of important components of nitrite reductase and nitrate reductase systems in the NO cycle, activation and deactivation mechanisms were also described including enzymes, cofactors, homeostasis parameters, etc. These findings help to understand regulatory mechanisms of NO cycle that is important for targeted treatment.

About the Authors

S. K. Soodaeva
Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia I.M.Sechenov First Moscow State Medical University, Healthcare Ministry of Russia
Russian Federation

ul. Odinnadtsataya Parkovaya 32, build. 4, Moscow, 105077, Russia;

ul. Trubetskaya 8, build. 2, Moscow, 119991, Russia

Doctor of Medicine, Professor, Head of Laboratory of Clinical and Experimental Biophysics, Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia; Professor at Department of Human Pathology, I.M.Sechenov First Moscow State Medical University, Healthcare Ministry of Russia; tel.: (495) 4655264



I. A. Klimanov
Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
Russian Federation

ul. Odinnadtsataya Parkovaya 32, build. 4, Moscow, 105077, Russia

Candidate of Medicine, Senior Researcher at Laboratory of Clinical and Experimental Biophysics, Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia; tel.: (495) 4655264



L. Yu. Nikitina
Khanty-Mansiysk State Medical Academy
Russian Federation

ul. Mira 40, Khanty-Mansiysk, 628007, Russia

Doctor of Medicine, Head of Department of Therapy, Faculty of Postgraduate Physician Training, Khanty Mansiysk State Medical Academy; tel.: (908) 8828620, факс: (3467) 324588



References

1. Markov Kh.M. About LargininNO bioregulatory system. Patologicheskaya fiziologiya. 1996; 1: 34–39 (in Russian).

2. Ashutosh K. Nitric oxide and asthma: a review. Curr. Opin. Pulm. Med. 2000; 6 (1): 21–25.

3. Osipov A.N., Borisenko G.G., Vladimirov Yu.A. Biological role of hemoprotein nitrosyl complexes. Uspekhi biologicheskoy khimii. 2007; 47: 259–292 (in Russian).

4. Dhir A., Kulkarni S.K. Nitric oxide and major depression. Nitric Oxide. 2011; 24 (3): 125–131. DOI: 10.1016/j.niox.2011.02.002.

5. Han X., Fink M.P., Uchiyama T. et al. Increased iNOS activity is essential for pulmonary epithelial tight junction dysfunction in endotoxemic mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004; 286: 259–267. DOI: 10.1152/ajplung.00187.2003.

6. Gustafsson L.E., Leone A.M., Persson M. et al. Endoge nous nitric oxide is present in the exhaled air of rabbits, quinea pigs and humans. Biochem. Biophys. Res. Commun. 1991; 181 (12): 852–857. DOI: 10.1016/0006291x(91)91268h.

7. Barnes P.J., Belvisi M.G. Nitric oxide and lung disease. Thorax. 1993; 48 (2): 1034–1043. DOI: 10.1136/thx.48.10.1034.

8. Nedospasov A.A., Beda N.V. Biogenic amines. Priroda. 2005; 7: 35–42 (in Russian).

9. Reutov V.P. Nitric oxide cycle in mammals and the rhythmicity. Biokhimiya. 2002; 67 (3): 353–376 (in Russian).

10. Eliseeva T.I., Kul'pina Yu.S., Soodaeva S.K., Kubysheva N.I. Nitric oxide metabolites in the exhaled breath condensate in children with bronchial asthma. Sovremennye tekhnologii v meditsine. 2010; 4: 42–47 (in Russian).

11. Kubysheva N., Soodaeva S., Postnikova L. et al. Associations between indicators of nitrosative stress and levels of soluble HLAI, CD95 molecules in patients with COPD. COPD. 2014; 11 (6): 639–644. DOI: 10.3109/15412555.2014.898042.

12. Soodaeva S.K., Klimanov I.A., Li T.V. et al. Change in nitric oxide metabolism in comorbidity of chronic obstructive pulmonary disease and chronic cerebral ischaemia. Pul'monologiya. 2012; 1: 31–34 (in Russian).

13. Soodaeva S., Li T., Klimanov I. et al. Nitric oxide metabolism in COPD comorbidities. Eur. Respir. J. 2014; 44 (Suppl. 58): P3822.

14. Weller R., Patullo S., Snith L. et al. Nitric oxide is generated on the skin surface by reduction of sweat nitrate. J. Invest. Dermatol. 1996; 107: 327–331.

15. Tomasi A., Ozden T., Skulachev V. Free radicals, nitric oxide, and inflammation: molecular, biochemical, and clinical aspects. In: NATO: Life and behavioural sciences. 344. Amsterdam: IOS Press; 2003: 71–88.

16. Chen Z., Zhang J., Stamler J. S. Identification of the enzymatic mechanism of nitroglycerin bioactivation. PNAS. 2002; 99 (12): 8306–8311.

17. Ogorodova L.M., Fedosenko S.V., Popenko A.S. et al. Comparative analysis of oropharyngeal microbiota in patients with chronic obstructive pulmonary disease and bronchial asthma. Vestnik RAMN. 2015; 70 (6): 669–678 (in Russian).

18. Lengeler J., Drews G., Schlegel H., eds. Current Microbiology. Prokaryotes (Translated from English). Moscow: Mir; 2005 (in Russian).

19. SparacinoWatkins C., Stolzb J.F., Basu P. Nitrate and periplasmic nitrate reductases. Chem. Soc. Rev. 2014; 43: 676–706. DOI: 10.1039/c3cs60249d.

20. Reimann F.J., Adelroth P. Proton transfer in bacterial nitric oxide reductase. Biochem. Soc. Trans. 2006; 34 (1): 188–190. DOI: 10.1042/bst0340188.

21. Duncan C., Dougal H., Johnston P. et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med. 1995; 1: 546–551. DOI: 10.1038/nm0695546.

22. Tazina E.V., Klychnikova E.V., Matveev S.B. et al. Relationships between nitric oxide level and endogenous intoxication in sepsis. Klinicheskaya laboratornaya diagnostika. 2013; 9: 58–61 (in Russian).

23. Zaprudnova E.A., Klimanov I.A., Soodaeva S.K. Novel approaches to early diagnosis of atopy in children. Pul'monologiya. 2010; 5: 70–73 (in Russian).

24. Khayrullin D.D., Zhestkov N.N. Hematological and electrocardiographic parameters in nitrate and nitrite poisoning in ships. Uchenye zapiski Kazanskoy gosudarstvennoy akademii veterinarnoy meditsiny imeni N.E.Baumana. 2011; 208: 288–293 (in Russian).

25. Ling W.C., Lau Y.S., Murugan D.D. et al. Sodium nitrite causes relaxation of the isolated rat aorta: By stimulating both endothelial NO synthase and activating soluble guanylyl cyclase in vascular smooth muscle. Vascular. Pharmacol. 2013; 74: 87–92. DOI: 10.1016/j.vph.2015.05.014.

26. Tiso M., Tejero J., Basu S. et al. Human neuroglobin functions as a redoxregulated nitrite reductase. J. Biol. Chem. 2011; 286 (20): 18277–18289. DOI: 10.1074/jbc.m110.159541.

27. Brunori M., Vallone B. A globin for the brain. FASEB J. 2016; 20 (13): 2192–2197. DOI: 10.1096/fj.066643rev.

28. Klimanov I.A., Soodaeva S.K. Mechanisms of exhaled breath condensate occurrence and oxidative stress markers in respiratory diseases. Pul'monologiya. 2009; 2: 113– 119 (in Russian).

29. Soodaeva S., Klimanov I., Lisitsa A., Zaprudnova E. The nitric oxide (NO) metabolites in monitoring and therapy of bronchial asthma. Eur. Resp. J. 2011; 38 (Suppl. 55): 738–739.

30. Lisitsa A.V., Klimanov I.A., Soodaeva S.K. Nitric Oxide Metabolism in Asthma: Treatment with Phospholipid Agents. Saarbrucken: Lap Lambert Academic Publishing; 2013 (in Russian).


Review

For citations:


Soodaeva S.K., Klimanov I.A., Nikitina L.Yu. Particularities of nitric oxide cycle in respiratory disease. PULMONOLOGIYA. 2016;26(6):753-759. (In Russ.) https://doi.org/10.18093/0869-0189-2016-26-6-753-759

Views: 1430


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)