Molecular mechanisms of corticosteroid resistance in patients with chronic obstructive pulmonary disease
https://doi.org/10.18093/0869-0189-2016-26-6-736-747
Abstract
Glucocorticoids are widely used for the treatment of chronic obstructive pulmonary disease (COPD) because of their antiinflammatory properties. However, their therapeutic effectiveness is significantly limited in COPD. Molecular mechanisms of steroid resistance include defective glucocorticoid receptor (GR) binding and translocation into the nucleus, increased expression of GRβ isoform, elevated expression of macrophage migration inhibitory factor (MIF), decreased expression of mitogenactivated protein kinase phosphatase 1 (MKP1) and histone deacetylase 2 (HDAC2). HDAC2 is involved in suppression of inflammatory genes by glucocorticoids, and its reduced activity and expression are the result of oxidative and nitrative stress induced by cigarette smoke. Oxidative stress causes activation of phosphoinositide3kinase δ (PI3Kδ) which leads to phosphorylation (activation) of Akt kinase, phosphorylation (inhibition) of glycogen synthase kinase 3β and phosphorylation (inactivation) of HDAC2. Understanding of the mechanisms leading to steroid resistance allowed identification drugs targeting this condition. Antidepressant nortriptyline and macrolide solithromycin reverse corticosteroid resistance through inhibition of Akt phosphorylation. Combination of glucocorticoid and longacting β2agonist increases GR nuclear translocation and inhibits Akt phosphorylation. The phosphodiesterase 4 inhibitor roflumilast in combination with dexamethasone improves steroid responsiveness through modulation of PI3Kδ, HDAC2, MKP1, MIF and GRβ expression. Investigation of the molecular mechanisms of steroid resistance can increase antiinflammatory properties of steroids and lead to more effective COPD treatment.
About the Authors
A. G. KadushkinRussian Federation
pr. Dzerzhinskogo 83, Minsk, 220116, Belarus
Candidate of Medicine, Assistant Lecturer at Department of Biological Chemistry, Belarusian State Medical University, tel.: (8017) 2726788
A. D. Taganovich
Russian Federation
pr. Dzerzhinskogo 83, Minsk, 220116, Belarus
Doctor of Medicine, Professor, Head of Department of Biological Chemistry, Belarusian State Medical University, tel.: (8017) 2726764
References
1. Boorsma M., Lutter R., van de Pol M.A. et al. Longterm effects of budesonide on inflammatory status in COPD. COPD. 2008; 5 (2): 97–104.
2. Barnes P.J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2013; 131 (3): 636–645.
3. Babu K.S., Kastelik J.A., Morjaria J.B. Inhaled corticosteroids in chronic obstructive pulmonary disease: a pro–conperspective. Br. J. Clin. Pharmacol. 2014; 78 (2): 282–300.
4. Suissa S., Barnes P.J. Inhaled corticosteroids in COPD: the case against. Eur. Respir. J. 2009; 34 (1): 13–16.
5. Higham A., Booth G., Lea S. et al. The effects of corticosteroids on COPD lung macrophages: a pooled analysis. Respir. Res. 2015; 16 (1): 98.
6. Milara J., Lluch J., Almudever P. et al. Roflumilast Noxide reverses corticosteroid resistance in neutrophils from patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2014; 134 (2): 314–322.
7. De Bosscher K., Vanden Berghe W., Haegeman G. The interplay between the glucocorticoid receptor and nuclear factorkB or activator protein1: molecular mechanisms for gene repression. Endocr. Rev. 2003; 24 (4): 488–522.
8. De Bosscher K., Haegeman G. Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol. Endocrinol. 2009; 23 (3): 281–291.
9. Van der Velden V.H. Glucocorticoids: mechanisms of action and antiinflammatory potential in asthma. Mediators Inflamm. 1998; 7 (4): 229–237.
10. Maneechotesuwan K., Yao X., Ito K. et al. Suppression of GATA3 nuclear import and phosphorylation: a novel mechanism of corticosteroid action in allergic disease. PLoS Med. 2009; 6 (5): e1000076.
11. Dostert A., Heinzel T. Negative glucocorticoid receptor response elements and their role in glucocorticoid action. Curr. Pharm. Des. 2004; 10 (23): 2807–2816.
12. Clark A.R. Antiinflammatory functions of glucocorticoid induced genes. Mol. Cell Endocrinol. 2007; 275 (1–2): 79–97.
13. Ayroldi E., Riccardi C. Glucocorticoidinduced leucine zipper (GILZ): a new important mediator of glucocorticoid action. FASEB J. 2009; 23 (11): 3649–3658.
14. Smoak K., Cidlowski J.A. Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. Mol. Cell Biol. 2006; 26 (23): 9126–9135.
15. Barnes P.J. Alveolar macrophages as orchestrators of COPD. COPD. 2004; 1 (1): 59–70.
16. Luger K., Mäder A.W., Richmond R.K. et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997; 389 (6648): 251–260.
17. Ito K., Barnes P.J., Adcock I.M. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin1δ induced histone H4 acetylation on lysines 8 and 12. Mol. Cell Biol. 2000; 20 (18): 6891–6903.
18. Hoesel B., Schmid J.A. The complexity of NFκB signaling in inflammation and cancer. Mol. Cancer. 2013; 12: 86.
19. Gilmore T.D. Introduction to NFκB: players, pathways, perspectives. Oncogene. 2006; 25 (51): 6680–6684.
20. De Bosscher K., Vanden Berghe W., Vermeulen L. et al. Glucocorticoids repress NFκBdriven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc. Natl. Acad. Sci. USA. 2000; 97 (8): 3919–3924.
21. Auphan N., DiDonato J.A., Rosette C. et al. Immuno suppression by glucocorticoids: inhibition of NFkappa B activity through induction of I kappa B synthesis. Science. 1995; 270 (5234): 286–290.
22. Johnson G.L., Lapadat R. Mitogenactivated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002; 298 (5600): 1911–1912.
23. Karin M. The regulation of AP1 activity by mitogenactivated protein kinases. J. Biol. Chem. 1995; 270 (28): 16483–16486.
24. Caelles C., GonzalezSancho J.M., Munoz A. Nuclear hormone receptor antagonism with AP1 by inhibition of the JNK pathway. Genes Dev. 1997; 11: 3351–3364.
25. Maneechotesuwan K., Xin Y., Ito K. et al. Regulation of Th2 cytokine genes by p38 MAPKmediated phosphorylation of GATA3. J. Immunol. 2007; 178 (4): 2491–2498.
26. Cuenda A., Rousseau S. p38 MAPkinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta. 2007; 1773 (8): 1358–1375.
27. Roskoski R.J. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 2012; 66 (2): 105–143.
28. Abraham S.M., Lawrence T., Kleiman A. et al. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J. Exp. Med. 2006; 203 (8): 1883–1889.
29. Lemire B.B. Debigaré R., Dubé A. et al. MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J. Appl. Physiol. 2012; 113 (1): 159–166.
30. Armstrong J., Harbron C., Lea S. et al. Synergistic effects of p38 mitogenactivated protein kinase inhibition with a corticosteroid in alveolar macrophages from patients with chronic obstructive pulmonary disease. J. Pharmacol. Exp. Ther. 2011; 338 (3): 732–740.
31. Singh D., Smyth L., Borrill Z. et al. A randomized, place bocontrolled study of the effects of the p38 MAPK inhibitor SB681323 on blood biomarkers of inflammation in COPD patients. J. Clin. Pharmacol. 2010; 50 (1): 94–100.
32. Mercado N., Hakim A., Kobayashi Y. et al. Restoration of corticosteroid sensitivity by p38 mitogen activated protein kinase inhibition in peripheral blood mononuclear cells from severe asthma. PLoS One. 2012; 7 (7): e41582.
33. Itoh M., Adachi M., Yasui H. et al. Nuclear export of glucocorticoid receptor is enhanced by cJun Nterminal kinasemediated phosphorylation. Mol. Endocrinol. 2002; 16 (10): 2382–2392.
34. Li L.B., Goleva E., Hall C.F. et al. Superantigeninduced corticosteroid resistance of human T cells occurs through activation of the mitogenactivated protein kinase kinase/extracellular signalregulated kinase (MEKERK) path way. J. Allergy Clin. Immunol. 2004; 114 (5): 1059–1069.
35. Kobayashi Y., Mercado N., Barnes P.J., Ito K. Defects of protein phosphatase 2A causes corticosteroid insensitivity in severe asthma. PLoS One. 2011; 6 (12): e27627.
36. Wallace A.M., Hardigan A., Geraghty P. et al. Protein phosphatase 2A regulates innate immune and proteolytic responses to cigarette smoke exposure in the lung. Toxicol. Sci. 2012; 126 (2): 589–599.
37. Kobayashi Y., Wada H., Rossios C. et al. A novel macrolide/fluoroketolide, solithromycin (CEM101), reverses corticosteroid insensitivity via phosphoinositide 3kinase pathway inhibition. Br. J. Pharmacol. 2013; 169 (5): 1024–1034.
38. Galigniana M.D., PiwienPilipuk G., Assreuy J. Inhibition of glucocorticoid receptor binding by nitric oxide. Mol. Pharmacol. 1999; 55 (2): 317–323.
39. Maestrelli P., Páska C., Saetta M. et al. Decreased haem oxygenase1 and increased inducible nitric oxide synthase in the lung of severe COPD patients. Eur. Respir. J. 2003; 21 (6): 971–976.
40. Wallace A.D., Cidlowski J.A. Proteasomemediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J. Biol. Chem. 2001; 276 (46): 42714–42721.
41. Flaster H., Bernhagen J., Calandra T., Bucala R. The macrophage migration inhibitory factorglucocorticoid dyad: regulation of inflammation and immunity. Mol. Endocrinol. 2007; 21 (6): 1267–1280.
42. Bhavsar P., Hew M., Khorasani N. et al. Relative corticosteroid insensitivity of alveolar macrophages in severe asthma compared with nonsevere asthma. Thorax. 2008; 63 (9): 784–790.
43. Aeberli D., Yang Y., Mansell A. et al. Endogenous macrophage migration inhibitory factor modulates glucocorticoid sensitivity in macrophages via effects on MAP kinase phosphatase1 and p38 MAP kinase. FEBS Lett. 2006; 580 (3): 974–981.
44. Oakley R.H., Jewell C.M., Yudt M.R. et al. The dominant negative activity of the human glucocorticoid receptor betaisoform. Specificity and mechanisms of action. J. Biol. Chem. 1999; 274 (39): 27857–27866.
45. Goleva E., Li L.B., Eves P.T. et al. Increased glucocorticoid receptor beta alters steroid response in glucocorticoid insensitive asthma. Am. J. Respir. Crit. Care Med. 2006; 173 (6): 607–616.
46. Charmandari E., Chrousos G.P., Ichijo T. et al. The human glucocorticoid receptor (hGR) β isoform suppresses the transcriptional activity of hGRα by interfering with formation of active coactivator complexes. Mol. Endocrinol. 2005; 19 (1): 52–64.
47. Li L.B., Leung D.Y., Martin R.J., Goleva E. Inhibition of histone deacetylase 2 expression by elevated glucocorticoid receptor beta in steroidresistant asthma. Am. J. Respir. Crit. Care Med. 2010; 182 (7): 877–883.
48. Ito K., Ito M., Elliott W.M. et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. New Engl. J. Med. 2005; 352 (19): 1967–1976.
49. Ito K., Yamamura S., EssilfieQuaye S. et al. Histone deacety lase 2mediated deacetylation of the glucocorticoid receptor enables NFκB suppression. J. Exp. Med. 2006; 203 (1): 7–13.
50. Cosio B.G., Tsaprouni L., Ito K. et al. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J. Exp. Med. 2004; 200 (5): 689–695.
51. Barnes P.J. Reduced histone deacetylase in COPD: clinical implications. Chest. 2006; 129 (1): 151–155.
52. Osoata G.O., Hanazawa T., Brindicci C. et al. Peroxynitrite elevation in exhaled breath condensate of COPD and its inhibition by fudosteine. Chest. 2009; 135 (6): 1513–1520.
53. Osoata G., Yamamura S., Ito M. et al. Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem. Biophys. Res. Commun. 2009; 384 (3): 366–371.
54. To Y., Ito K., Kizawa Y. et al. Targeting phosphoinositide3 kinaseδ with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010; 182 (7): 897–904.
55. Ngkelo A., Hoffmann R.F., Durham A.L. et al. Glycogen synthase kinase3β modulation of glucocorticoid responsiveness in COPD. Am. J. Physiol. Lung Cell Mol. Physiol. 2015; 309 (10): L1112–L1123.
56. Ford P.A., Durham A.L., Russell R.E. et al. Treatment effects of lowdose theophylline combined with an inhaled corticosteroid in COPD. Chest. 2010; 137 (6): 1338–1344.
57. Mercado N., To Y., Ito K., Barnes P.J. Nortriptyline reverses corticosteroid insensitivity by inhibition of PI3Kδ. J. Pharmacol. Exp. Ther. 2011; 337 (2): 465–470.
58. Meja K.K., Rajendrasozhan S., Adenuga D. et al. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am. J. Respir. Cell Mol. Biol. 2008; 39 (3): 312–323.
59. Nannini L.J., Poole P., Milan S.J., Kesterton A. Combined corticosteroid and longacting beta2agonist in one inhaler versus inhaled corticosteroids alone for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2013; 8: CD006826.
60. Usmani O.S., Ito K., Maneechotesuwan K. et al. Glucocorticoid receptor nuclear translocation in airway cells after inhaled combination therapy. Am. J. Respir. Crit. Care Med. 2005; 172 (6): 704–712.
61. Kobayashi Y., Mercado N., MillerLarsson A. et al. Increased corticosteroid sensitivity by a long acting β2 ago nist formoterol via β2 adrenoceptor independent protein phosphatase 2A activation. Pulm. Pharmacol. Ther. 2012; 25 (3): 201–207.
62. Rossios C., To Y., Osoata G. et al. Corticosteroid insensitivity is reversed by formoterol via phosphoinositide3kinase inhibition. Br. J. Pharmacol. 2012; 167 (4): 775–786.
63. Авдеев С.Н. Новые возможности противовоспалительной терапии хронической обструктивной болезни легких. Пульмонология. 2013; 4: 95–101. / Avdeev S.N. New perspectives of antiinflammatory therapy of chronic obstructive pulmonary disease. Pul'monologiya. 2013; 4: 95–101 (in Russian).
64. Milara J., Morell A., Ballester B. et al. Roflumilast improves corticosteroid resistance COPD bronchial epithelial cells stimulated with toll like receptor 3 agonist. Respir. Res. 2015; 16: 12.
Review
For citations:
Kadushkin A.G., Taganovich A.D. Molecular mechanisms of corticosteroid resistance in patients with chronic obstructive pulmonary disease. PULMONOLOGIYA. 2016;26(6):736-747. (In Russ.) https://doi.org/10.18093/0869-0189-2016-26-6-736-747