Pneumonia from the point of view of organ interaction
https://doi.org/10.18093/0869-0189-2015-25-4-483-491
Abstract
Functional interaction between parenchyma components, stroma, and hematopoietic cell populations of the alveoli under acute inflammation have been described in this review. Cells interact via cytokines and growth factors; a role of this interaction for the pathogenesis of pneumonia is also discussed. We suppose a need of omprehensive research of pneumonia pathogenesis in terms of all structural components of inflammation focus. Thereafter we introduced a concept of interaction systems. Parenchymal elements, such as type I and type II pneumocytes, brush cells, and stromal elements, such as interstitial tissue, fibers, cell populations, alveolar capillaries, and autonomic nerve terminals, are describes in the article. Certain aspects of pneumonia pathogenesis are poorly understood including mechanisms of neutrophil migration to the alveoli and a role of interaction systems in this process. We offer to apply the term of interaction systems relating to the lung tissue when investigating pneumonia.
About the Authors
R. F. ZibirovRussian Federation
Assistant Lecturer at Department of Pathological Anatomy, Smolensk State Medical University, Healthcare Ministry of Russia; pathologist at the Division of Clinical Pathology N2, State Regional Smolensk Institute of Pathology; tel.: (4812) 383102
D. V. Kozlov
Russian Federation
MD, Professor at Department of Pathological Anatomy, Smolensk State Medical University, Healthcare Ministry of Russia; Head of the Division of Clinical Pathology N2, State Regional Smolensk Institute of Pathology; tel.: (4812) 383102
References
1. Serhan C.N., Ward P.A., Gilroy D.W. Fundamentals of inflammation. Cambridge: Cambridge University Press; 2010.
2. Knight D. Epithelium fibroblast interactions in response to airway inflammation. Immunol. Cell. Biol. 2001; 79 (2): 160–164.
3. Dorosevich A.E., Abrosimov S.Yu., Bekhtereva I.A., Sudilovskaya V.V. Comparison of relationships between autonomic nervous system and vascular system in patients with precancerous condition, breast cancer and cervix uteri cancer. Ural'skiy meditsinskiy zhurnal. 2014; 8: 10–16 (in Russian).
4. Romanova L.K. Respiratory part of the lungs. In: Erokhin V.V., Romanova L.K. Cell Biology of the Lungs in Health and Pathology. Moscow: Meditsina; 2000: 113–153 (in Russian).
5. Serebryakov I. S. Cell structure and secretory activity of alveolar epithelium in health and under abnormal functioning of the autonomic nervous system: Dis. Moscow; 1984. (in Russian).
6. Mason R.J., Broaddus C.V., Martin T.R. et al. Murray &Nadel's textbook of respiratory medicine. Philadelphia: Saunders; 2010.
7. Borok Z., Crandall E.D. Type I сells. In: Laurent G., Shapiro S., ed. Encyclopedia of respiratory medicine. Oxford: Elsevier Ltd; 2006: 133–138.
8. Mason R.J. Type II Cells. In: Laurent G., Shapiro S., ed. Encyclopedia of respiratory medicine. Oxford: Elsevier Ltd; 2006: 138–142.
9. Montuschi P. New perspectives in monitoring lung inflammation: analysis of exhaled breath condensate. London, New York, Washington: CRC Press; 2005.
10. Paine R., Morris S.B., Jin H. et al. ICAM 1 facilitates alveolar macrophage phagocytic activity through effects on migration over the AEC surface. Am. J. Physiol. 2002; 283 (1): 227–229.
11. Lee J.H., Del Sorbo L., Uhlig S. et al. Intercellular adhesion molecule 1 mediates cellular cross talk between parenchymal and immune cells after lipopolysaccharide neutraliza tion. J. Immunol. 2004; 172 (1): 608–616.
12. Mahabeleshwar G.H., Feng W., Reddy K. et al. Mecha nisms of integrin vascular endothelial growth factor receptor cross activation in angiogenesis. Circ. Res. 2007; 101 (6): 570–580.
13. Adamson I.Y., Hedgecock C., Bowden D.H. Epithelial cell fibroblast interactions in lung injury and repair. Am. J. Pathol. 1990; 137 (2): 385–392.
14. Thorley A.J., Goldstraw P., Young A. et al. Primary human alveolar type II epithelial cell CCL20 (macrophage inflammatory protein 3alpha) induced dendritic cell migration. Am. J. Respir. Cell. Mol. Biol. 2005; 32 (4): 262–267.
15. Sato K., Tomioka H., Shimizu T. et al. Type II alveolar cells play roles in macrophage mediated host innate resistance to pulmonary mycobacterial infections by producing proin flammatory cytokines. J. Infect. Dis. 2002; 185 (8): 1139–1147.
16. Proud D. The pulmonary epithelium in health and disease. Chichester: John Wiley & Sons Ltd; 2008.
17. Hu M., Lin X., Du Q. et al. Regulation of polymorphonu clear leukocyte apoptosis: role of lung endothelium epithelium bilayer transmigration. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005; 288: 266–274.
18. Debbabi H., Ghosh S., Kamath A.B. et al. Primary type II alveolar epithelial cells present microbial antigens to antigen specific CD4+ T cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005; 289 (2): 274–279.
19. Schagat T.L., Wofford J.A., Wright J.R. Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils. J. Immunol. 2001; 166 (4): 2727–2733.
20. Crapo J.D., Harmsen A.G., Sherman M.P. et al. Pulmonary immunobiology and inflammation in pulmonary diseases. Am. J. Respir. Crit. Care Med. 2000; 162 (5): 1983–1986.
21. Shannon J.M., Pan T., Nielsen L.D. et al. Lung fibroblasts improve differentiation of rat type II cells in primary culture. Am. J. Respir. Cell Mol. Biol. 2001; 24, (3): 235–244.
22. Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir. Res. 2001; 2 (1): 33–46.
23. Erokhin V.V. Functional morphology of the lungs. Moscow: Meditsina; 1987 (in Russian).
24. Reid L., Meyrick B., Antony V.B. et al. The mysterious pulmonary brush cell. Am. J. Respir. Сrit. Сare Med. 2005; 172 (1): 136–139.
25. Ross M.H., Kaye I.G., Pawlina W. Histology. A text and atlas. Philadelphia: Lippincott Williams & Wilkins; 2002.
26. Chuchalin A.G. Pulmonary edema: physiology of pulmonary circulation and pathophysiology of pulmonary edema. Pul'monologiya. 2005; 4: 9–18 (in Russian).
27. Voelkel N.F., Rounds S. The pulmonary endothelium: function in health and disease. Hoboken: WileyBlackwell; 2009.
28. Delclaux C., Azoulay E. Inflammatory response to infectious pulmonary injury. Eur. Respir. J. 2003; 42:10–14.
29. Hislop A., Wojciak Stothard B. Endothelial cells and endothelium. In: Laurent G., Shapiro S., ed. Encyclopedia of respiratory medicine. Oxford: Elsevier Ltd; 2006: 69–74.
30. Andonegui G., Bonder C.S., Green F. et al. Endothelium derived toll like receptor 4 is the key molecule in LPS induced neutrophil sequestration into lungs. J. Clin. Invest. 2003; 111 (7): 1011–1020.
31. Shepro D. Microvascular research: biology and pathology. New York: Elsevier Academic Press; 2005.
32. Lebleu V.S., Macdonald B., Kalluri R. Structure and function of basement membranes. Exp. Biol. Med. 2007; 232 (9): 1121–1129.
33. Sirianni F.E., Chu F.S.F., Walker D.C. Human alveolar wall fibroblasts directly link epithelial type 2 cells to capillary endothelium. Am. J. Respir. Crit. Care Med. 2003; 168 (12):1532–1537.
34. Armulik A., Abramsson A., Betsholtz C. Endothelial / Pericyte Interactions. Circ. Res. 2005; 97 (6): 512–523.
35. Hirschi K.K., D'Amore P.A. Pericytes in the microvasculature. Cardiovasc. Res.1996; 32 (4): 687–698.
36. Rucker H.K., Wynder H.J., Thomas W.E. Cellular mechanisms of CNS pericytes. Brain. Res. Bull. 2000; 51 (5): 363–369.
37. Frevert C.W., Wight T.N. Matrix proteoglycans. In: Laurent G., Shapiro S., ed. Encyclopedia of respiratory medicine. Oxford: Elsevier Ltd; 2006: 184–188.
38. Savani R.C., Hou G., Liu P. et al. A role for hyaluronan in macrophage accumulation and collagen deposition after bleomycin induced lung injury. Am. J. Respir. Cell. Mol. Biol. 2000; 23 (4): 475–484.
39. McKee C.M., Penno M.B., Cowman M. et al. Hyaluronan fragments induce chemokine gene expression in alveolar macrophages: the role of HA size and CD44. J. Clin. Invest. 1996; 98 (10): 2403–2413.
40. Mohamadzadeh M., De Grendele H., Arizpe H. et al. Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA dependent primary adhesion. J. Clin. Invest. 1998; 101(1): 97–108.
41. Tufvesson E., Westergren Thorsson G. Alteration of proteoglycan synthesis in human lung fibroblasts induced by interleukin 1 beta and tumor necrosis factor alpha. J. Cell. Biochem. 2000; 77 (2): 298–309.
42. Kim S., Bakre M., Yin H. et al. Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J. Clin. Invest. 2002; 110 (7): 933–941.
43. Coraux C., Roux J., Jolly T. et al. Epithelial cell extracellular matrix interactions and stem cells in airway epithelial regeneration. Proc. Am. Thorac. Soc. 2008; 5 (6): 689–694.
44. Davis G.S., Poynter M.E. Pulmonary macrophages. In: Laurent G., Shapiro S., ed. Encyclopedia of respiratory medicine. Oxford: Elsevier Ltd; 2006: 563–572.
45. Behzad A.R., Chu F., Walker D.C. Fibroblasts are in a position to provide directional information to migrating neutrophils during pneumonia in rabbit lungs. Microvasc. Res. 1996; 51 (3): 303–316.
46. Vancheri C., Sortino M.A., Tomaselli V. et al. Different expression of TNFα receptors and prostaglandin E2 production in normal and fibrotic lung fibroblasts potential implications for the evolution of the inflammatory process. Am. J. Respir. Cell. Mol. Biol. 2000; 22 (5): 628–634.
47. Crosby L.M., Waters C.M. Epithelial repair mechanisms in the lung. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2010; 298 (6): 715–731.
48. Jones M.R., Simms B.T., Lupa M.M. et al. Lung NFκB activation and neutrophil recruitment require IL 1 and TNF receptor signaling during pneumococcal pneumonia. J. Immunol. 2005; 175 (11): 7530–7535.
49. Lepekha L.N. Pulmonary macrophages. In: Erokhin V.V., Romanova L.K. Cell Biology of the Lungs in Health and Pathology. Moscow: Meditsina; 2000: 234–253 (in Russian).
50. Kelley J. Cytokines of the lung. Am. Rev. Respir. Dis. 1990; 141 (3): 765–788.
51. Blumenthal D.E., Campbell P., Hwang R.L. et al. Human alveolar macrophages induce functional inactivation in antigen specific CD4 T cells. J. Allergy Clin. Immunol. 2001; 107 (2): 258–264.
52. Zhang P., Summer W.R., Bagby G.J. et al. Innate immunity and pulmonary host defense. Immunol. Rev. 2000; 173 (1): 39–51.
53. Xu W., Roos A., Daha M.R. et al. Dendritic cell and macrophage subsets in the handling of dying cells. Immunobiology. 2006; 211 (6–8): 567–575.
54. Fadok V.A., Bratton D.L., Henson P.M. Phagocyte receptors for apoptotic cells: recognition, uptake, and conse quences. J. Clin. Invest. 2001; 108 (7): 957–962.
55. Janardhan K.S., Sandhu S.K., Singh B. Neutrophil depletion inhibits early and late monocyte / macrophage increase in lung inflammation. Front. Biosci. 2006; 11: 1569–1576.
56. Hyde D.M., Miller L.A., McDonald R.J. et al. Neutrophils enhance clearance of necrotic epithelial cells in ozone induced lung injury in rhesus monkeys. Am. J. Physiol. 1999; 277 (1): 1190–1198.
57. Serhan C.N., Savill J. Resolution of inflammation: the beginning programs the end. Nat. Immunol. 2005; 6 (12): 1191–1197.
58. Papayianni A., Serhan C.N., Brady H.R. Lipoxin A4 and B4 inhibit leukotrienestimulated interactions of human neutrophils and endothelial cells. J. Immunol. 1996; 156 (6): 2264–2272.
59. van Wetering S., Tjabringa G.S., Hiemstra P.S. Interactions between neutrophil derived antimicrobial peptides and airway epithelial cells. Leukoc. Biol. 2005; 77 (4): 444–450.
60. Kachanova I.V. Risk factors for pneumonia morbidity in military units. Vestnik Smolenskoy gosudarstvennoy meditsin skoy akademii. 2005; 1: 83–85 (in Russian).
61. Pretolani M., Goldman M. IL 10: a potential therapy for allergic inflammation? Immunol. Today. 1997; 18, (6): 277–280.
62. Tamaoki J. The effects of macrolides on inflammatory cells. Chest. 2004; 125 (2): 41–51.
63. Boussaud V., Soler P., Moreau J. et al. Expression of three members of the TNF R family of receptors (4 1BB, lymphotoxin beta receptor, and Fas) in human lung. Eur. Respir. J. 1998; 12 (4): 926–931.
64. Serov V.V., Paukov V.S. Inflammation. Handbook for physicians. Moscow: Meditsina; 1995 (in Russian).
65. Wojtarowicz A., Podlasz P., Czaja K. Adrenergic and cholinergic innervation of pulmonary tissue in the pig. Folia Morphol. 2003; 62 (3): 215–218.
66. Yang X., Zhao C., Gao Z., Su X. A novel regulator of lung inflammation and immunity: pulmonary parasympathetic inflammatory reflex. Q. J. Med. 2014; 107: 789–792.
Review
For citations:
Zibirov R.F., Kozlov D.V. Pneumonia from the point of view of organ interaction. PULMONOLOGIYA. 2015;25(4):483-491. (In Russ.) https://doi.org/10.18093/0869-0189-2015-25-4-483-491