Preview

Пульмонология

Расширенный поиск

Взгляд на пневмонию с позиции коммуникационных систем

https://doi.org/10.18093/0869-0189-2015-25-4-483-491

Аннотация

Данный обзор литературы посвящен функциональным особенностям взаимодействия между компонентами паренхимы, стромы, гематогенными клеточными популяциями в легочной альвеоле при развитии острого воспаления. Показано взаимное влияние клеток через цитокины, факторы роста и роль этого влияния на патогенез пневмонии. Обсуждается необходимость комплексного изучения патогенеза пневмонии с акцентом на всех структурных компонентах очага воспаления, в связи с чем используется понятие о коммуникационных системах. В работе описаны элементы паренхимы (пневмоциты 1го и 2го порядка, щеточные клетки) и стромы (основное межуточное вещество, волокна и клеточные популяции, альвеолярные капилляры легких, вегетативные нервные терминали). Обращается внимание на недостаточно изученные аспекты патогенеза пневмоний – механизмы миграции нейтрофильных лейкоцитов в легочную альвеолу и роль компонентов коммуникационных систем в этом процессе. Предлагается использовать понятие о коммуникационных системах применительно к легочной ткани при исследовании пневмонии.

Об авторах

Р. Ф. Зибиров
ГБОУ ВПО "Смоленский государственный медицинский университет" Минздрава России; 214019, Смоленск, ул. Крупской, 28 ОГБУЗ "Смоленский областной институт патологии": 214018, Смоленск, проспект Гагарина, 27
Россия

ассистент кафедры патологической анатомии ГБОУ ВПО "Смоленский государственный медицинский университет" Минздрава России, врачпатологоанатом отделения клинической патологии № 2 ОГБУЗ "Смоленский областной институт патологии"; тел.: (4812) 383102



Д. В. Козлов
ГБОУ ВПО "Смоленский государственный медицинский университет" Минздрава России; 214019, Смоленск, ул. Крупской, 28 ОГБУЗ "Смоленский областной институт патологии": 214018, Смоленск, проспект Гагарина, 27
Россия

д. м. н., профессор кафедры патологической анатомии ГБОУ ВПО "Смоленский государственный медицинский университет" Минздрава России, зав. отделением клинической патологии № 2 областного государственного бюджетного учреждения здравоохранения "Смоленский областной институт патологии"; тел.: (4812) 383102



Список литературы

1. Serhan C.N., Ward P.A., Gilroy D.W. Fundamentals of inflammation. Cambridge: Cambridge University Press; 2010.

2. Knight D. Epithelium fibroblast interactions in response to airway inflammation. Immunol. Cell. Biol. 2001; 79 (2): 160–164.

3. Dorosevich A.E., Abrosimov S.Yu., Bekhtereva I.A., Sudilovskaya V.V. Comparison of relationships between autonomic nervous system and vascular system in patients with precancerous condition, breast cancer and cervix uteri cancer. Ural'skiy meditsinskiy zhurnal. 2014; 8: 10–16 (in Russian).

4. Romanova L.K. Respiratory part of the lungs. In: Erokhin V.V., Romanova L.K. Cell Biology of the Lungs in Health and Pathology. Moscow: Meditsina; 2000: 113–153 (in Russian).

5. Serebryakov I. S. Cell structure and secretory activity of alveolar epithelium in health and under abnormal functioning of the autonomic nervous system: Dis. Moscow; 1984. (in Russian).

6. Mason R.J., Broaddus C.V., Martin T.R. et al. Murray &Nadel's textbook of respiratory medicine. Philadelphia: Saunders; 2010.

7. Borok Z., Crandall E.D. Type I сells. In: Laurent G., Shapiro S., ed. Encyclopedia of respiratory medicine. Oxford: Elsevier Ltd; 2006: 133–138.

8. Mason R.J. Type II Cells. In: Laurent G., Shapiro S., ed. Encyclopedia of respiratory medicine. Oxford: Elsevier Ltd; 2006: 138–142.

9. Montuschi P. New perspectives in monitoring lung inflammation: analysis of exhaled breath condensate. London, New York, Washington: CRC Press; 2005.

10. Paine R., Morris S.B., Jin H. et al. ICAM 1 facilitates alveolar macrophage phagocytic activity through effects on migration over the AEC surface. Am. J. Physiol. 2002; 283 (1): 227–229.

11. Lee J.H., Del Sorbo L., Uhlig S. et al. Intercellular adhesion molecule 1 mediates cellular cross talk between parenchymal and immune cells after lipopolysaccharide neutraliza tion. J. Immunol. 2004; 172 (1): 608–616.

12. Mahabeleshwar G.H., Feng W., Reddy K. et al. Mecha nisms of integrin vascular endothelial growth factor receptor cross activation in angiogenesis. Circ. Res. 2007; 101 (6): 570–580.

13. Adamson I.Y., Hedgecock C., Bowden D.H. Epithelial cell fibroblast interactions in lung injury and repair. Am. J. Pathol. 1990; 137 (2): 385–392.

14. Thorley A.J., Goldstraw P., Young A. et al. Primary human alveolar type II epithelial cell CCL20 (macrophage inflammatory protein 3alpha) induced dendritic cell migration. Am. J. Respir. Cell. Mol. Biol. 2005; 32 (4): 262–267.

15. Sato K., Tomioka H., Shimizu T. et al. Type II alveolar cells play roles in macrophage mediated host innate resistance to pulmonary mycobacterial infections by producing proin flammatory cytokines. J. Infect. Dis. 2002; 185 (8): 1139–1147.

16. Proud D. The pulmonary epithelium in health and disease. Chichester: John Wiley & Sons Ltd; 2008.

17. Hu M., Lin X., Du Q. et al. Regulation of polymorphonu clear leukocyte apoptosis: role of lung endothelium epithelium bilayer transmigration. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005; 288: 266–274.

18. Debbabi H., Ghosh S., Kamath A.B. et al. Primary type II alveolar epithelial cells present microbial antigens to antigen specific CD4+ T cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005; 289 (2): 274–279.

19. Schagat T.L., Wofford J.A., Wright J.R. Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils. J. Immunol. 2001; 166 (4): 2727–2733.

20. Crapo J.D., Harmsen A.G., Sherman M.P. et al. Pulmonary immunobiology and inflammation in pulmonary diseases. Am. J. Respir. Crit. Care Med. 2000; 162 (5): 1983–1986.

21. Shannon J.M., Pan T., Nielsen L.D. et al. Lung fibroblasts improve differentiation of rat type II cells in primary culture. Am. J. Respir. Cell Mol. Biol. 2001; 24, (3): 235–244.

22. Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir. Res. 2001; 2 (1): 33–46.

23. Erokhin V.V. Functional morphology of the lungs. Moscow: Meditsina; 1987 (in Russian).

24. Reid L., Meyrick B., Antony V.B. et al. The mysterious pulmonary brush cell. Am. J. Respir. Сrit. Сare Med. 2005; 172 (1): 136–139.

25. Ross M.H., Kaye I.G., Pawlina W. Histology. A text and atlas. Philadelphia: Lippincott Williams & Wilkins; 2002.

26. Chuchalin A.G. Pulmonary edema: physiology of pulmonary circulation and pathophysiology of pulmonary edema. Pul'monologiya. 2005; 4: 9–18 (in Russian).

27. Voelkel N.F., Rounds S. The pulmonary endothelium: function in health and disease. Hoboken: WileyBlackwell; 2009.

28. Delclaux C., Azoulay E. Inflammatory response to infectious pulmonary injury. Eur. Respir. J. 2003; 42:10–14.

29. Hislop A., Wojciak Stothard B. Endothelial cells and endothelium. In: Laurent G., Shapiro S., ed. Encyclopedia of respiratory medicine. Oxford: Elsevier Ltd; 2006: 69–74.

30. Andonegui G., Bonder C.S., Green F. et al. Endothelium derived toll like receptor 4 is the key molecule in LPS induced neutrophil sequestration into lungs. J. Clin. Invest. 2003; 111 (7): 1011–1020.

31. Shepro D. Microvascular research: biology and pathology. New York: Elsevier Academic Press; 2005.

32. Lebleu V.S., Macdonald B., Kalluri R. Structure and function of basement membranes. Exp. Biol. Med. 2007; 232 (9): 1121–1129.

33. Sirianni F.E., Chu F.S.F., Walker D.C. Human alveolar wall fibroblasts directly link epithelial type 2 cells to capillary endothelium. Am. J. Respir. Crit. Care Med. 2003; 168 (12):1532–1537.

34. Armulik A., Abramsson A., Betsholtz C. Endothelial / Pericyte Interactions. Circ. Res. 2005; 97 (6): 512–523.

35. Hirschi K.K., D'Amore P.A. Pericytes in the microvasculature. Cardiovasc. Res.1996; 32 (4): 687–698.

36. Rucker H.K., Wynder H.J., Thomas W.E. Cellular mechanisms of CNS pericytes. Brain. Res. Bull. 2000; 51 (5): 363–369.

37. Frevert C.W., Wight T.N. Matrix proteoglycans. In: Laurent G., Shapiro S., ed. Encyclopedia of respiratory medicine. Oxford: Elsevier Ltd; 2006: 184–188.

38. Savani R.C., Hou G., Liu P. et al. A role for hyaluronan in macrophage accumulation and collagen deposition after bleomycin induced lung injury. Am. J. Respir. Cell. Mol. Biol. 2000; 23 (4): 475–484.

39. McKee C.M., Penno M.B., Cowman M. et al. Hyaluronan fragments induce chemokine gene expression in alveolar macrophages: the role of HA size and CD44. J. Clin. Invest. 1996; 98 (10): 2403–2413.

40. Mohamadzadeh M., De Grendele H., Arizpe H. et al. Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA dependent primary adhesion. J. Clin. Invest. 1998; 101(1): 97–108.

41. Tufvesson E., Westergren Thorsson G. Alteration of proteoglycan synthesis in human lung fibroblasts induced by interleukin 1 beta and tumor necrosis factor alpha. J. Cell. Biochem. 2000; 77 (2): 298–309.

42. Kim S., Bakre M., Yin H. et al. Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J. Clin. Invest. 2002; 110 (7): 933–941.

43. Coraux C., Roux J., Jolly T. et al. Epithelial cell extracellular matrix interactions and stem cells in airway epithelial regeneration. Proc. Am. Thorac. Soc. 2008; 5 (6): 689–694.

44. Davis G.S., Poynter M.E. Pulmonary macrophages. In: Laurent G., Shapiro S., ed. Encyclopedia of respiratory medicine. Oxford: Elsevier Ltd; 2006: 563–572.

45. Behzad A.R., Chu F., Walker D.C. Fibroblasts are in a position to provide directional information to migrating neutrophils during pneumonia in rabbit lungs. Microvasc. Res. 1996; 51 (3): 303–316.

46. Vancheri C., Sortino M.A., Tomaselli V. et al. Different expression of TNFα receptors and prostaglandin E2 production in normal and fibrotic lung fibroblasts potential implications for the evolution of the inflammatory process. Am. J. Respir. Cell. Mol. Biol. 2000; 22 (5): 628–634.

47. Crosby L.M., Waters C.M. Epithelial repair mechanisms in the lung. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2010; 298 (6): 715–731.

48. Jones M.R., Simms B.T., Lupa M.M. et al. Lung NFκB activation and neutrophil recruitment require IL 1 and TNF receptor signaling during pneumococcal pneumonia. J. Immunol. 2005; 175 (11): 7530–7535.

49. Lepekha L.N. Pulmonary macrophages. In: Erokhin V.V., Romanova L.K. Cell Biology of the Lungs in Health and Pathology. Moscow: Meditsina; 2000: 234–253 (in Russian).

50. Kelley J. Cytokines of the lung. Am. Rev. Respir. Dis. 1990; 141 (3): 765–788.

51. Blumenthal D.E., Campbell P., Hwang R.L. et al. Human alveolar macrophages induce functional inactivation in antigen specific CD4 T cells. J. Allergy Clin. Immunol. 2001; 107 (2): 258–264.

52. Zhang P., Summer W.R., Bagby G.J. et al. Innate immunity and pulmonary host defense. Immunol. Rev. 2000; 173 (1): 39–51.

53. Xu W., Roos A., Daha M.R. et al. Dendritic cell and macrophage subsets in the handling of dying cells. Immunobiology. 2006; 211 (6–8): 567–575.

54. Fadok V.A., Bratton D.L., Henson P.M. Phagocyte receptors for apoptotic cells: recognition, uptake, and conse quences. J. Clin. Invest. 2001; 108 (7): 957–962.

55. Janardhan K.S., Sandhu S.K., Singh B. Neutrophil depletion inhibits early and late monocyte / macrophage increase in lung inflammation. Front. Biosci. 2006; 11: 1569–1576.

56. Hyde D.M., Miller L.A., McDonald R.J. et al. Neutrophils enhance clearance of necrotic epithelial cells in ozone induced lung injury in rhesus monkeys. Am. J. Physiol. 1999; 277 (1): 1190–1198.

57. Serhan C.N., Savill J. Resolution of inflammation: the beginning programs the end. Nat. Immunol. 2005; 6 (12): 1191–1197.

58. Papayianni A., Serhan C.N., Brady H.R. Lipoxin A4 and B4 inhibit leukotrienestimulated interactions of human neutrophils and endothelial cells. J. Immunol. 1996; 156 (6): 2264–2272.

59. van Wetering S., Tjabringa G.S., Hiemstra P.S. Interactions between neutrophil derived antimicrobial peptides and airway epithelial cells. Leukoc. Biol. 2005; 77 (4): 444–450.

60. Kachanova I.V. Risk factors for pneumonia morbidity in military units. Vestnik Smolenskoy gosudarstvennoy meditsin skoy akademii. 2005; 1: 83–85 (in Russian).

61. Pretolani M., Goldman M. IL 10: a potential therapy for allergic inflammation? Immunol. Today. 1997; 18, (6): 277–280.

62. Tamaoki J. The effects of macrolides on inflammatory cells. Chest. 2004; 125 (2): 41–51.

63. Boussaud V., Soler P., Moreau J. et al. Expression of three members of the TNF R family of receptors (4 1BB, lymphotoxin beta receptor, and Fas) in human lung. Eur. Respir. J. 1998; 12 (4): 926–931.

64. Serov V.V., Paukov V.S. Inflammation. Handbook for physicians. Moscow: Meditsina; 1995 (in Russian).

65. Wojtarowicz A., Podlasz P., Czaja K. Adrenergic and cholinergic innervation of pulmonary tissue in the pig. Folia Morphol. 2003; 62 (3): 215–218.

66. Yang X., Zhao C., Gao Z., Su X. A novel regulator of lung inflammation and immunity: pulmonary parasympathetic inflammatory reflex. Q. J. Med. 2014; 107: 789–792.


Рецензия

Для цитирования:


Зибиров Р.Ф., Козлов Д.В. Взгляд на пневмонию с позиции коммуникационных систем. Пульмонология. 2015;25(4):483-491. https://doi.org/10.18093/0869-0189-2015-25-4-483-491

For citation:


Zibirov R.F., Kozlov D.V. Pneumonia from the point of view of organ interaction. PULMONOLOGIYA. 2015;25(4):483-491. (In Russ.) https://doi.org/10.18093/0869-0189-2015-25-4-483-491

Просмотров: 614


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)