Preview

PULMONOLOGIYA

Advanced search

Diversity and hazard of respiratory infection of Achromobacter spp. in cystic fibrosis patients

https://doi.org/10.18093/0869-0189-2015-25-4-389-402

Abstract

Background and aims. Achromobacter spp., as causative agent of the nosocomial infections, has caught the eye last Decades. The growth of the infecting of the respiratory tract of the cystic fibrosis patients by this microorganism is formidable. The aim of this investigation was the Achromobacter spp. identification in expanded cohort of the Russian CF patients, genotyping of the microorganism according to the international standards and molecular epidemiological analysis of the situation with this opportunistic microorganism. Methods. Clinical samples from about 300 patients: sputum, tracheal aspirate, throat swabs and strains, isolated from the samples, were the material for the investigation. Method of the multilocus sequence typing (MLST), extended by the additional targets, was the base for the research. Results. 25 percents of the patients routinely hospitalized because of the severity of the disease, were infected by Achromobacter spp. of five species: A. xylosoxidans, A. ruhlandii, A. marplatensis, A. dolens, A. pulmonis, and one genogroup. The species A. ruhlandii has dominated (58.5%). One of the drug resistance indicator – oxacillinase gene blaOXA – helps in the differentiation of the genera Achromobacter and Burkholderia, and also some species in the genus Achromobacter. From 26 identified Achromobacter spp. genotypes (sequence type, ST) 16 STs relate to the species A. xylosoxidans, five – to A. ruhlandii. ST263 is specific to the patients from the Far Eastern Federal District. ST261 and 36 are the most numerous: the patients of all Federal Districts are infected by this ST. The chronological analysis allows suggesting the replacement of the genotype 261 by the genotype 36 in the end of the 1990s years and the A. ruhlandii ST36 nosocomial outbreak. At present 39% of the patients with Achromobacter spp. are infected by A. ruhlandii ST36, transmissivity of which is proved the coinfection cases of the siblings and simultaneously hospitalized patients. The influence on the respiratory function of the CF patients was the most expressed for the A. ruhlandii ST261strains. For the younger age group (1997 year of birth and younger), infected by A. ruhlandii ST36, the median of the FEV1 was slightly lower than in older age group, infected by those strain, that can indicate the accumulation of the pathogenic properties by the A. ruhlandii ST36 during the circulation between the patients. Conclusions. A. ruhlandii ST36 strain by the combination of the identified properties may be considered as the Russian epidemic strain.

About the Authors

O. L. Voronina
N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia: 18, Gamalei str., Moscow, 123098, Russia
Russian Federation

PhD in Biology, Chief Scientist, Assistant Professor, Head of Laboratory of Analysis of Genomes, N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia; tel.: (499) 1933760



M. S. Kunda
N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia: 18, Gamalei str., Moscow, 123098, Russia
Russian Federation

PhD in Biology, Senior Researcher at Laboratory of Analysis of Genomes, N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia; tel.: (499) 1933760



N. N. Ryzhova
N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia: 18, Gamalei str., Moscow, 123098, Russia
Russian Federation

PhD in Biology, Senior Researcher at Laboratory of Analysis of Genomes, N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia; tel.: (499) 1933760



E. I. Aksenova
N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia: 18, Gamalei str., Moscow, 123098, Russia
Russian Federation

PhD in Biology, Senior Researcher at Laboratory of Analysis of Genomes, N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia; tel.: (499) 1933760



A. N. Semenov
N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia: 18, Gamalei str., Moscow, 123098, Russia
Russian Federation

Research Technician at Laboratory of Analysis of Genomes, N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia; tel.: (499) 1933760



A. V. Lazareva
Federal Research Centre of Children's Health, Healthcare Ministry of Russia: 2, build. 1, Lomonosovskiy av., Moscow, 119991, Russia
Russian Federation

PhD, Head of Laboratory of Microbiology, Federal Research Centre of Children's Health, Healthcare Ministry of Russia; tel.: (499) 1343083



S. Yu. Semykin
Federal Russian Children's Clinical Hospital, Healthcare Ministry of Russia: 117, Leninskiy av., Moscow, 117997, Russia
Russian Federation

PhD, Head of Pediatric Department at Federal Research Centre of Children's Health, Healthcare Ministry of Russia; tel.: (499) 7800806



E. L. Amelina
Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia: 32, build. 4, 11th Parkovaya str., Moscow, 105077, Russia
Russian Federation

PhD, Head of Laboratory of Cystic Fibrosis, Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia; tel.: (499) 7800806



O. I. Simonova
Federal Research Centre of Children's Health, Healthcare Ministry of Russia: 2, build. 1, Lomonosovskiy av., Moscow, 119991, Russia
Russian Federation

MD, Head of Department of Pulmonology and Allergology at Federal Research Centre of Children's Health, Healthcare Ministry of Russia; tel.: (499) 1343083



S. A. Krasovskiy
ФГБУ "НИИ пульмонологии" ФМБА России: 105077, Москва, ул. 11я Парковая, 32, корп. 4
Russian Federation

PhD, Senior Researcher at Laboratory of Cystic Fibrosis, Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia; tel.: (495) 4657415



V. G. Lunin
N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia: 18, Gamalei str., Moscow, 123098, Russia
Russian Federation

PhD in Biology, Head of Laboratory of Biologically Active Nanostructures at N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia; tel.: (499) 1933760



A. A. Baranov
Federal Research Centre of Children's Health, Healthcare Ministry of Russia: 2, build. 1, Lomonosovskiy av., Moscow, 119991, Russia
Russian Federation

MD, Academician of Russian Science Academy, Director of Federal Research Centre of Children's Health, Healthcare Ministry of Russia; tel.: (499) 1343083



A. G. Chuchalin
Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia: 32, build. 4, 11th Parkovaya str., Moscow, 105077, Russia
Russian Federation

MD, Professor, Academician of Russian Science Academy, Director of Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia; President of Russian Respiratory Society; Chief Therapeutist and Pulmonologist of Healthcare Ministry of Russia; tel. / fax: (495) 4655264



A. L. Gintsburg
N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia: 18, Gamalei str., Moscow, 123098, Russia
Russian Federation

Doctor of Biology, Professor, Academi cian of Russian Science Academy, Director of N.F.Gamaleya Federal Research Center for Epidemiology and Microbiology, Healthcare Ministry of Russia; tel.: (499) 1933001



References

1. Woolhouse M.E. Population biology of emerging and reemerging pathogens. Trends Microbiol. 2002; 10 (10, Suppl.): S3–S7.

2. Mahenthiralingam E. Emerging cystic fibrosis pathogens and the microbiome. Paediatr. Respir. Rev. 2014; 15 (Suppl. 1): 13–15. DOI: 10.1016/j.prrv.2014.04.006.

3. Yabuuchi E., Ohyama A. Achromobacter xylosoxidans n. sp. from human ear discharge. Jpn. J. Microbiol. 1971; 15: 477–481.

4. Yabuuchi E., Yano I. Achromobacter gen. nov. and Achromobacter xylosoxidans (ex Yabuuchi and Ohyama 1971) norn. rev. Int. J. Syst. Bacteriol. 1981; 31 (4): 477–478.

5. Kersters K., De Ley J. Genus Alcaligenes Castellani and Chalmers. 1919; 936': 365. In: Krieg N.R., Holt V., eds. Bergey's manual of systematic bacteriology. Baltimore /London: Williams & Wilkins Co; 1984. Vol. 1.

6. Davis D.H., Doudoroff M., Stanier R.Y., Mandel M. Proposal to reject the genus Hydrogenomonas. Taxonomic implications. Int. J. Syst. Bacteriol. 1969; 19: 375–390.

7. Aragno M., Schlegel H.G. Alcaligenes ruhlandii (Packer and Vishniac) comb. nov., a peritrichous hydrogen bacterium previously assigned to Pseudomonas. Int. J. Syst. Bacteriol. 1977; 27: 279–281.

8. Yabuuchi E., Kawamura Y., Kosako Y., Ezaki T. Emendation of genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and proposal of Achromobacter ruhlandii (Packer and Vishniac) comb. nov., Achromobacter piechaudii (Kiredjian et al.) comb. nov., and Achromobacter xylosoxidans subsp. denitrificans (Rüger and Tan) comb. nov. Microbiol. Immunol. 1998; 42 (6): 429–438.

9. Gomila M., Tvrzova L., Teshim A. et al. Achromobacter marplatensis sp nov., isolated from a pentachlorophenol contaminated soil. Int. J. Syst. Evol. Microbiol. 2011; 61: 2231–2237.

10. Vandamme P., Moore E.R., Cnockaert M. et al. Classification of Achromobacter genogroups 2, 5, 7 and 14 as Achromobacter insuavis sp. nov., Achromobacter aegrifaciens sp. nov., Achromobacter anxifer sp. nov. and Achromobacter dolens sp. nov., respectively. Syst. Appl. Microbiol. 2013; 36 (7): 474–482. DOI: 10.1016/j.syapm. 2013.06.005.

11. Vandamme P., Moore E.R., Cnockaert M. et al. Achromobacter animicus sp. nov., Achromobacter mucicolens sp. nov., Achromobacter pulmonis sp. nov. and Achromobacter spiritinus sp. nov., from human clinical samples. Syst. Appl. Microbiol. 2013; 36: 1–10. DOI: 10.1016/j.syapm. 2012.10.003.

12. List of Prokaryotic names with Standing in Nomenclature. Site founded by: Euzéby J.P., http://www.bacterio.net/achromobacter.html

13. Peltroche Llacsahuanga H., Haase G., Kentrup H. Persistent airway colonization with Alcaligenes xylosoxidans in two brothers with cystic fibrosis [letter]. Eur. J. Clin. Microbiol. Infect. Dis. 1998; 17: 132–134.

14. Klinger J.D., Thomassen M.J. Occurrence and antimicrobial susceptibility of gram negative nonfermentative bacilli in cystic fibrosis patients. Diagn. Microbiol. Infect. Dis. 1985; 3: 149–158. DOI:10.1016/07328893(85)900252.

15. Patient Registry. Annual Data Report to the Center Directors. 2013. Cystic Fibrosis Foundation. Bethesda, Maryland. 2013. www.cff.org.

16. Dunne W.M. Jr, Maisch S. Epidemiological investigation of infections due to Alcaligenes species in children and patients with cystic fibrosis: use of repetitive element sequence polymerase chain reaction. Clin. Infect. Dis. 1995; 20: 836–841.

17. Krzewinski J.W., Nguyen C.D., Foster J.M., Burns J.L. Use of random amplified polymorphic DNA PCR to examine epidemiology of Stenotrophomonas maltophilia and Achromobacter (Alcaligenes) xylosoxidans from patients with cystic fibrosis. J. Clin. Microbiol. 2001; 39 (10): 3597–3602.

18. Spilker T., Vandamme P., Lipuma J.J. A multilocus sequence typing scheme implies population structure and reveals several putative novel achromobacter species. J. Clin. Microbiol. 2012; 50: 3010–3015.

19. Spilker T., Vandamme P., Lipuma J.J. Identification and distribution of Achromobacter species in cystic fibrosis. J. Cyst. Fibros. 2013; 12 (3): 298– 301. DOI: 10.1016/j.jcf.2012.10.002.

20. The Main Site PubMLST of the Faculty of Zoology. Great Britain, Oxford: Oxford of University. http://pubmlst.org/

21. Zhang Z., Fan X., Gao X., Zhang X.H. Achromobacter sediminum sp. nov., isolated from deep subseafloor sediment of South Pacific Gyre. Int. J. Syst. Evol. Microbiol. 2014; 64 (Pt 7): 2244–2249. DOI: 10.1099/ijs.0.062265 0.

22. Tan K., Conway S.P., Brownlee K.G. et al. Alcaligenes infection in cystic fibrosis. Pediatr. Pulmonol. 2002; 34 (2): 101–104.

23. Registre français de la mucoviscidose – Bilan des données.2013. http://www.vaincrelamuco.org/sites/default/files/registre2013.pdf

24. Vu Thien H., Moissenet D., Valcin M. et al. Molecular epidemiology of Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans in a cystic fibrosis center. Eur. J. Clin. Microbiol. Infect. Dis. 1996; 15 (11): 876–879.

25. Amoureux L., Bador J., Siebor E. et al. Epidemiology and resistance of Achromobacter xylosoxidans from cystic fibrosis patients in Dijon, Burgundy: first French data. J. Cyst. Fibros. 2013; 12: 170–176.

26. Magni A., Trancassini M., Varesi P. et al. Achromobacter xylosoxidans genomic characterization and correlation of randomly amplified polymorphic DNA profiles with relevant clinical features [corrected] of cystic fibrosis patients. J. Clin. Microbiol. 2010; 48 (4):1035–1039. DOI: 10.1128/JCM.0206009.

27. Trancassini M., Iebba V., Citerà N. et al. Outbreak of Achromobacter xylosoxidans in an Italian Cystic fibrosis center: genome variability, biofilm production, antibiotic resistance, and motility in isolated strains. Front. Microbiol. 2014; 5: 138. DOI: 10.3389/fmicb.2014.00138. eCollection 2014.

28. Lambiase A., Catania M.R., Del P.M. et al. Achromobacter xylosoxidans respiratory tract infection in cystic fibrosis patients. Eur. J. Clin. Microbiol. Infect. Dis. 2011; 30 (8): 973–980.

29. Wang M., Ridderberg W., Hansen C.R. et al. Early treatment with inhaled antibiotics postpones next occurrence of Achromobacter in cystic fibrosis. J. Cyst. Fibros. 2013; 12: 638–643. DOI: 10.1016/j.jcf.2013.04.013.

30. Steinkamp G., Wiedemann B., Rietschel E. et al. Prospective evaluation of emerging bacteria in cystic fibrosis. J. Cyst. Fibros. 2005; 4 (1): 41–48.

31. Barrado L., Brañas P., Orellana M.Á. et al. Molecular characterization of Achromobacter isolates from cystic fibrosis and non cystic fibrosis patients in Madrid, Spain. J. Clin. Microbiol. 2013; 51: 1927–1930. DOI: 10.1128/JCM.0049413.

32. Kanellopoulou M., Pournaras S., Iglezos H. et al. Persistent colonization of nine cystic fibrosis patients with an Achromobacter (Alcaligenes) xylosoxidans clone. Eur. J. Clin. Microbiol. Infect. Dis. 2004; 23 (4): 336 339.

33. de Baets F., Schelstraete P., van Daele S. et al. Achromobacter xylosoxidans in cystic fibrosis: prevalence and clinical relevance. J. Cyst. Fibros. 2007; 6(1): 75 78.

34. Traglia G., Papalia M., Almuzara M. et al. Presence of OXA type enzymes in Achromobacter insuavis and A. dolens. Curr. Microbiol. 2014; 69 (4): 501–506. DOI: 10.1007/s002840140611y.

35. Pereira R.H., Carvalho Assef A.P., Albano R.M. et al. Achromobacter xylosoxidans: characterization of strains in Brazilian cystic fibrosis patients. J. Clin. Microbiol. 2011; 49(10): 3649–3651. DOI: 10.1128/JCM.0528311.

36. Dupont C., Michon A.L., Jumas Bilak E. et al. Intrapatient diversity of Achromobacter spp. involved in chronic colonization of Cystic Fibrosis airways. Infect. Genet. Evol. 2015; 32: 214–223. doi: 10.1016/j.meegid.2015.03.012

37. Papalia M., Almuzara M., Cejas D. et al. OXA 258 from Achromobacter ruhlandii: a species specific marker. J. Clin. Microbiol. 2013; 51 (5): 1602–1605. DOI: 10.1128/JCM.0304312.

38. Ridderberg W., Bendstrup K.E., Olesen H.V. et al. Marked increase in incidence of Achromobacter xylosoxidans infections caused by sporadic acquisition from the environment. J. Cyst. Fibros. 2011; 10: 466–469.

39. Ridderberg W., Wang M., Nørskov Lauritsen N. Multilocus sequence analysis of isolates of Achromobacter from patients with cystic fibrosis reveals infecting species other than Achromobacter xylosoxidans. J. Clin. Microbiol. 2012; 50 (8): 2688–2894. DOI: 10.1128/JCM.00728 12.

40. Green H., Jones A.M. The microbiome and emerging pathogens in cystic fibrosis and non cystic fibrosis bronchiectasis. Semin. Respir. Crit. Care Med. 2015; 36 (2): 225–235. DOI: 10.1055/s 0035 1546752.

41. Lobo L.J., Tulu Z., Aris R.M., Noone P.G. Pan resistant Achromobacter xylosoxidans and Stenotrophomonas maltophilia infection in cystic fibrosis does not reduce survival after lung transplantation. Transplantation. 2015, Apr. 8. [Epub ahead of print].

42. Lévesque R., Letarte R., Pechère J.C. Comparative study of the beta lactamase activity found in Achromobacter. Can. J. Microbiol. 1983; 29: 819–826.

43. Doi Y., Poirel L., Paterson D.L., Nordmann P. Charac terization of a naturally occurring class D beta lactamase from Achromobacter xylosoxidans. Antimicrob. Agents. Chemother. 2008; 52 (6): 1952–1956.

44. Voronina O.L., Chernukha M.Yu., Shaginyan I.A. et al. Characterization of Burkholderia cepacia complex strains genotypes isolated from hospitalized patients at the Russian Federation. Molekulyarnaya genetika, mikrobiologiya i viru sologiya. 2013; 28 (2): 64–73 (in Russian).

45. Voronina O.L., Kunda M.S., Aksenova E.I. et al. Instant diagnosis of microorganisms affecting the airways in cystic fibrosis patients. Klinicheskaya laboratornaya diagnostika. 2013; 11: 53–58 (in Russian)

46. Voronina O.L., Kunda M.S., Ryzhova N.N. et al. The variability of the order Burkholderiales representatives in the Healthcare Units. BioMed. Res. Int. 2015; 2015: 680210. DOI:10.1155/2015/68021.

47. Operations manual MUK 4.2.1890 04 'Determination of miscoorganisms sensitivity to antibacterials' (Approved by the Chief Hygienist of Russian Federation on the 4th, Mar, 2004) (in Russian)

48. The Main Site EUCAST. http://www.eucast.org/

49. Delgado S., Arroyo R., Jiménez E. et al. Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis: potential virulence traits and resistance to antibiotics. BMC Microbiol. 2009; 9: 82. DOI: 10.1186/1471 2180 982.

50. Spilker T., Baldwin A., Bumford A. et al. Expanded multilocus sequence typing for Burkholderia species. J. Clin. Microbiol. 2009; 47 (8): 2607–2610. DOI: 10.1128/JCM. 0077009.

51. Turton J.F., Mustafa N., Shah J. et al. Identification of Achromobacter xylosoxidans by detection of the bla(OXA114 like) gene intrinsic in this species. Diagn. Microbiol. Infect. Dis. 2011; 70 (3): 408–411. DOI: 10.1016/j.diagmicrobio.2011.02.007.

52. The Main Site CBMAR: Comprehensive Beta lactamase Molecular Annotation Resource, University of Delhi South Campus, New Delhi, India. http://14.139.227.92/mkumar/lactamasedb/

53. The Main Site EMBL EBI, European Bioinformatics Institute. http://www.ebi.ac.uk 54. The Main Site PubMLST of the Faculty of Zoology, Oxford University, Great Britain, Achromobacter MLST Data bases. http://pubmlst.org/achromobacter/

54. Amoureux L., Bador J., Fardeheb S. et al. Detection of Achromobacter xylosoxidans in hospital, domestic, and outdoor environmental samples and comparison with human clinical isolates. Appl. Environ. Microbiol. 2013; 79 (23): 7142–7149. DOI: 10.1128/AEM.02293 13.

55. Voronina O.L., Kunda M.S., Ryzhova N.N. et al. Selection patterns of the ubiquitous polyhostal microorganisms through representatives of three taxa. Molekulyarnaya biologiya. 2015; 49 (3): 380–390. DOI: 10.1134/S0026893315030176 (in Russian).


Review

For citations:


Voronina O.L., Kunda M.S., Ryzhova N.N., Aksenova E.I., Semenov A.N., Lazareva A.V., Semykin S.Yu., Amelina E.L., Simonova O.I., Krasovskiy S.A., Lunin V.G., Baranov A.A., Chuchalin A.G., Gintsburg A.L. Diversity and hazard of respiratory infection of Achromobacter spp. in cystic fibrosis patients. PULMONOLOGIYA. 2015;25(4):389-402. (In Russ.) https://doi.org/10.18093/0869-0189-2015-25-4-389-402

Views: 10962


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)