Preview

PULMONOLOGIYA

Advanced search

Phenotypes and endotypes of asthma in children

https://doi.org/10.18093/0869-0189-2025-35-5-623-634

Abstract

Asthma remains the most common chronic non-infectious respiratory disease in children, affecting about 14 – 15% of the global pediatric population. Current research shows that asthma is not a single disease, but a spectrum of different endotypes and phenotypes. Phenotypes describe the observed demographic and clinical characteristics of asthma, while endotypes reflect the underlying pathogenetic mechanisms of the disease. The aim. The review systematizes current data on clinical phenotypes (allergic and non-allergic asthma, preschool-age asthma, severe asthma) and inflammatory endotypes (T2-high and T2-low) of asthma in children. Results. Biomarkers used to identify endotypes and their clinical significance are analyzed. The main problems in determining phenotypes and endotypes of asthma in children are highlighted, including the possibility of combining several phenotypes in one patient, temporal instability of biomarkers, and the influence of comorbid conditions. Particular attention is paid to insufficient study of non-allergic asthma and T2-low endotype in children. Conclusion. It is shown that the determination of phenotypes and endotypes of asthma is critical for personalizing therapy and improving the prognosis of the disease. However, further studies of their stability over time and validation in prospective studies are needed for more effective use in clinical practice.

About the Authors

S. Yu. Tereshchenko
Federal State Budgetary Scientific Institution “Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences” – separate division of the Research Institute for Medical Problems of the North, Ministry of Science and Higher Education of the Russian Federation
Russian Federation

Sergey Yu. Tereshchenko, Doctor of Medicine, Professor, Chief Researcher, Head of the Clinical Department of Somatic and Mental Health of Children

ul. Partizana Zheleznyaka 3G, Krasnoyarsk, 660022, tel.: (391) 228-06-33 


Competing Interests:

The authors declare no conflict of interest. 



M. V. Smolnikova
Federal State Budgetary Scientific Institution “Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences” – separate division of the Research Institute for Medical Problems of the North, Ministry of Science and Higher Education of the Russian Federation
Russian Federation

Marina V. Smolnikova, Candidate of Biology, Head of the Molecular Genetic Research Group, Leading Researcher of the Laboratory of Molecular Cell Physiology and Pathology

ul. Partizana Zheleznyaka 3G, Krasnoyarsk, 660022, tel.: (391) 228-06-33 


Competing Interests:

The authors declare no conflict of interest. 



References

1. Global Asthma Network. Global Asthma Report 2024. Available at: https://globalasthmanetwork.org/ [Accessed: January 30, 2025].

2. Batozhargalova B.Ts., Mizernitskiy Yu.L., Podol'naya M.A. [Meta-analysis of the prevalence of asthma-like symptoms and asthma in Russia (according to the results of ISAAC]. Rossiyskiy vestnik perinatologii i pediatrii. 2016; 61 (4): 59–69. DOI: 10.21508/1027-4065-2016-61-4-59-69 (in Russian).

3. Ministry of Health of the Russian Federation. [Clinical guidelines: Bronchial asthma]. 2024. Available at: https://raaci.ru/dat/pdf/clin_BA.pdf [Accessed: January 30, 2025] (in Russian).

4. Wenzel S.E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 2012; 18 (5): 716–725. DOI: 10.1038/nm.2678.

5. Pembrey L., Barreto M.L., Douwes J. et al. Understanding asthma phenotypes: the World Asthma Phenotypes (WASP) international collaboration. ERJ Open Res. 2018; 4 (3): 00013-2018. DOI: 10.1183/23120541.00013-2018.

6. Holgate S.T., Polosa R. Treatment strategies for allergy and asthma. Nat. Rev. Immunol. 2008; 8 (3): 218–230. DOI: 10.1038/nri2262.

7. Fainardi V., Esposito S., Chetta A., Pisi G. Asthma phenotypes and endotypes in childhood. Minerva Med. 2022; 113 (1): 94–105. DOI: 10.23736/S0026-4806.21.07332-8.

8. Kuruvilla M.E., Lee F.E., Lee G.B. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin. Rev. Allergy Immunol. 2019; 56 (2): 219–233. DOI: 10.1007/s12016-018-8712-1.

9. Agache I., Akdis C.A. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J. Clin. Invest. 2019; 129 (4): 1493–1503. DOI: 10.1172/jci124611.

10. Nenasheva N.M. [Т2-high and T2-low bronchial asthma, endotype characteristics and biomarkers]. Pul'monologiya. 2019; 29 (2): 216–228. DOI: 10.18093/0869-0189-2019-29-2-216-228 (in Russian).

11. Skorokhodkina O.V., Khakimova M.R., Timerbulatova G.A. et al. [Cytokines as biomarkers ofeosinophilic inflammation in T2-endotype of bronchial asthma]. Vestnik sovremennoy klinicheskoy meditsiny. 2021;14 (6): 68–75. DOI: 10.20969/VSKM.2021.14(6).68-75 (in Russian).

12. Joanne M., Jennifer T., Malcolm B. Diagnosis and management of asthma in children. BMJ Paediatr. Open. 2022; 6 (1): e001277. DOI: 10.1136/bmjpo-2021-001277.

13. Pijnenburg M.W., Fleming L. Advances in understanding and reducing the burden of severe asthma in children. Lancet Respir. Med. 2020; 8 (10): 1032–1044. DOI: 10.1016/s2213-2600(20)30399-4.

14. Rackemann F.M. A working classification of asthma. Am. J. Med. 1947; 3 (5): 601–606. DOI: 10.1016/0002-9343(47)90204-0.

15. Hopkin J.M. The diagnosis of asthma, a clinical syndrome. Thorax. 2012; 67 (7): 660–602. DOI: 10.1136/thoraxjnl-2012-201825.

16. Lötvall J., Akdis C.A., Bacharier L.B. et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J. Allergy Clin. Immunol. 2011; 127 (2): 355–360. DOI: 10.1016/j.jaci.2010.11.037.

17. Foppiano F., Schaub B. Childhood asthma phenotypes and endotypes: a glance into the mosaic. Mol. Cell Pediatr. 2023; 10 (1): 9. DOI: 10.1186/s40348-023-00159-1.

18. Conrad L.A., Cabana M.D., Rastogi D. Defining pediatric asthma: phenotypes to endotypes and beyond. Pediatr. Res. 2021; 90 (1): 45–51. DOI: 10.1038/s41390-020-01231-6.

19. Papadopoulos N.G., Čustović A., Cabana M.D. et al. Pediatric asthma: An unmet need for more effective, focused treatments. Pediatr. Allergy Immunol. 2019; 30 (1): 7–16. DOI: 10.1111/pai.12990.

20. Anderson G.P. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008; 372 (9643): 1107–1119. DOI: 10.1016/s0140-6736(08)61452-x.

21. Ray A., Camiolo M., Fitzpatrick A. et al. Are we meeting the promise of endotypes and precision medicine in asthma? Physiol. Rev. 2020; 100 (3): 983–1017. DOI: 10.1152/physrev.00023.2019.

22. Demko I.V., Sobko E.A., Kraposhina A.Yu., Shestakova N.A. [Organization of biological therapy for patients with severe eosinophilic bronchial asthma in the Krasnoyarsk region]. Pul'monologiya. 2023; 33 (1): 119–127. DOI: 10.18093/0869-0189-2023-33-1-119-127 (in Russian).

23. Licari A., Castagnoli R., Brambilla I. et al. Asthma endotyping and biomarkers in childhood asthma. Pediatr. Allergy Immunol. Pulmonol. 2018; 31 (2): 44–55. DOI: 10.1089/ped.2018.0886.

24. Furman E.G., Alieva Y.S., Khuzina E.A. [Current knowledge of bronchial asthma with low T2-inflammation in school-aged children (review)]. Pediatr. 2024; 15 (2): 53–62. DOI: 10.17816/ped15253-62 (in Russian).

25. Mizernitskiy Yu.L. [Bronchial asthma in children: urgent questions requiring answers]. Pediatriya Vostochnaya Yevropa. 2024; 12 (1): 10–16. DOI: 10.34883/PI.2024.12.1.001 (in Russian).

26. Pijnenburg M.W., Frey U., De Jongste J.C., Saglani S. Childhood asthma: pathogenesis and phenotypes. Eur. Respir. J. 2022; 59 (6): 2100731. DOI: 10.1183/13993003.00731-2021.

27. Martinez F.D., Wright A.L., Taussig L.M. et al. Asthma and wheezing in the first six years of life. N. Engl. J. Med. 1995; 332 (3): 133–138. DOI: 10.1056/nejm199501193320301.

28. Sonnappa S., Bastardo C.M., Wade A. et al. Symptom-pattern phenotype and pulmonary function in preschool wheezers. J. Allergy Clin. Immunol. 2010; 126 (3): 519–526. DOI: 10.1016/j.jaci.2010.04.018.

29. Spycher B.D., Cochrane C., Granell R. et al. Temporal stability of multitrigger and episodic viral wheeze in early childhood. Eur. Respir. J. 2017; 50 (5): 1700014. DOI: 10.1183/13993003.00014-2017.

30. Schultz A., Brand P.L. Episodic viral wheeze and multiple trigger wheeze in preschool children: a useful distinction for clinicians? Paediatr. Respir. Rev. 2011; 12 (3): 160–164. DOI: 10.1016/j.prrv.2011.01.008.

31. Guilbert T.W., Morgan W.J., Krawiec M. et al. The Prevention of early asthma in kids study: design, rationale and methods for the childhood asthma research and education network. Control Clin. Trials. 2004; 25 (3): 286–310. DOI: 10.1016/j.cct.2004.03.002.

32. Raedler D., Ballenberger N., Klucker E. et al. Identification of novel immune phenotypes for allergic and nonallergic childhood asthma. J. Allergy Clin. Immunol. 2015; 135 (1): 81–91. DOI: 10.1016/j.jaci.2014.07.046.

33. Depner M., Fuchs O., Genuneit J. et al. Clinical and epidemiologic phenotypes of childhood asthma. Am. J. Respir. Crit. Care Med. 2014; 189 (2): 129–138. DOI: 10.1164/rccm.201307-1198OC.

34. Haider S., Granell R., Curtin J. et al. Modeling wheezing spells identifies phenotypes with different outcomes and genetic associates. Am. J. Respir. Crit. Care Med. 2022; 205 (8): 883–893. DOI: 10.1164/rccm.202108-1821OC.

35. Lemanske R.F.Jr. The childhood origins of asthma (COAST) study. Pediatr. Allergy Immunol. 2002; 13 (s15): 38–43. DOI: 10.1034/j.1399-3038.13.s.15.8.x.

36. Busse W.W., Mitchell H. Addressing issues of asthma in inner-city children. J. Allergy Clin. Immunol. 2007; 119 (1): 43–49. DOI: 10.1016/j.jaci.2006.10.021.

37. Gaffin J.M., Petty C.R., Sorkness R.L. et al. Determinants of lung function across childhood in the Severe Asthma Research Program (SARP) 3. J. Allergy Clin. Immunol. 2023; 151 (1): 138–146.e9. DOI: 10.1016/j.jaci.2022.08.014.

38. Pongracic J.A., Krouse R.Z., Babineau D.C. et al. Distinguishing characteristics of difficult-to-control asthma in inner-city children and adolescents. J. Allergy Clin. Immunol. 2016; 138 (4): 1030–1041. DOI: 10.1016/j.jaci.2016.06.059.

39. Guilbert T.W., Bacharier L.B., Fitzpatrick A.M. Severe asthma in children. J. Allergy Clin. Immunol. Pract. 2014; 2 (5): 489–500. DOI: 10.1016/j.jaip.2014.06.022.

40. Fain S.B., McIntosh M.J. A new approach to computed tomography measurement of airway remodelling in paediatric asthma. ERJ Open Res. 2024; 10 (1): 00763-2023. DOI: 10.1183/23120541.00763-2023.

41. Schatz M., Hsu J.W., Zeiger R.S. et al. Phenotypes determined by cluster analysis in severe or difficult-to-treat asthma. J. Allergy Clin. Immunol. 2014; 133 (6): 1549–1556. DOI: 10.1016/j.jaci.2013.10.006.

42. Zoratti E.M., Krouse R.Z., Babineau D.C. et al. Asthma phenotypes in inner-city children. J. Allergy Clin. Immunol. 2016; 138 (4): 1016–1029. DOI: 10.1016/j.jaci.2016.06.061.

43. Reddy M.B., Liu A.H., Robinson J.L., Klinnert M.D.Recurrent wheeze phenotypes in poor urban preschool-age children. J. Allergy Clin. Immunol. Pract. 2019; 7 (2): 736–739.e5. DOI: 10.1016/j.jaip.2018.06.026.

44. Howrylak J.A., Fuhlbrigge A.L., Strunk R.C. et al. Classification of childhood asthma phenotypes and long-term clinical responses to inhaled anti-inflammatory medications. J. Allergy Clin. Immunol. 2014; 133 (5): 1289–1300.e1-12. DOI: 10.1016/j.jaci.2014.02.006.

45. Yoon J., Eom E.J., Kim J.T. et al. Heterogeneity of childhood asthma in Korea: cluster analysis of the Korean childhood asthma study cohort. Allergy Asthma Immunol. Res. 2021; 13 (1): 42–55. DOI: 10.4168/aair.2021.13.1.42.

46. Fitzpatrick A.M., Teague W.G., Meyers D.A. et al. Heterogeneity of severe asthma in childhood: confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. J. Allergy Clin. Immunol. 2011; 127 (2): 382–389.e1-13. DOI: 10.1016/j.jaci.2010.11.015.

47. Gans M.D., Gavrilova T. Understanding the immunology of asthma: pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr. Respir. Rev. 2020; 36: 118–127. DOI: 10.1016/j.prrv.2019.08.002.

48. Tiotiu A. Biomarkers in asthma: state of the art. Asthma Res. Pract. 2018; 4: 10. DOI: 10.1186/s40733-018-0047-4.

49. Hussain M., Liu G. Eosinophilic asthma: pathophysiology and therapeutic horizons. Cells. 2024; 13 (5): 384. DOI: 10.3390/cells13050384.

50. Porpodis K., Tsiouprou I., Apostolopoulos A. et al. Eosinophilic asthma, phenotypes-endotypes and current biomarkers of choice. J. Pers. Med. 2022; 12 (7): 1093. DOI: 10.3390/jpm12071093.

51. Pampura N., Kamaev A.V., Lebedenko A.A. [Asthma biomarkers in children. New opportunities, real practice and frontiers]. Meditsinskiy vestnik Yuga Rossii. 2022; 13 (2): 91–101. DOI: 10.21886/2219-8075-2022-13-2-91-101 (in Russian).

52. Teague W.G., Lawrence M.G., Shirley D.T. et al. Lung lavage granulocyte patterns and clinical phenotypes in children with severe, therapy-resistant asthma. J. Allergy Clin. Immunol. Pract. 2019; 7 (6): 1803–1812. DOI: 10.1016/j.jaip.2018.12.027.

53. Steinke J.W., Lawrence M.G., Teague W.G. et al. Bronchoalveolar lavage cytokine patterns in children with severe neutrophilic and paucigranulocytic asthma. J. Allergy Clin. Immunol. 2021; 147 (2): 686–693.e3. DOI: 10.1016/j.jaci.2020.05.039.

54. Maison N., Omony J., Illi S. et al. T2-high asthma phenotypes across lifespan. Eur. Respir. J. 2022; 60 (3): 2102288. DOI: 10.1183/13993003.02288-2021.

55. Nagakumar P., Puttur F., Gregory L.G. et al. Pulmonary type-2 innate lymphoid cells in paediatric severe asthma: phenotype and response to steroids. Eur. Respir. J. 2019; 54 (2): 1801809. DOI: 10.1183/13993003.01809-2018.

56. Guiddir T., Saint-Pierre P., Purenne-Denis E. et al. Neutrophilic steroid-refractory recurrent wheeze and eosinophilic steroid-refractory asthma in children. J. Allergy Clin. Immunol. Pract. 2017; 5 (5): 1351–1361. DOI: 10.1016/j.jaip.2017.02.003.

57. Robinson P.F.M., Fontanella S., Ananth S. et al. Recurrent severe preschool wheeze: from prespecified diagnostic labels to underlying endotypes. Am. J. Respir. Crit. Care Med. 2021; 204 (5): 523–535. DOI: 10.1164/rccm.202009-3696OC.

58. Raphael G., Damera G., Angeles T. et al. P1061 TEV-48574, an anti-TL1A antibody in development for use in IBD, is safe and well tolerated following 16 weeks of subcutaneous treatment in adults with severe uncontrolled T2-low/non T2 asthma. Journal of Crohn's and Colitis. 2024; 18 (Suppl. 1): i1908. DOI: 10.1093/ecco-jcc/jjad212.1191.

59. Uwaezuoke S.N., Ayuk A.C., Eze J.N. Severe bronchial asthma in children: a review of novel biomarkers used as predictors of the disease. J. Asthma Allergy. 2018; 11: 11–18. DOI: 10.2147/jaa.s149577.

60. Tereshchenko S.Y., Smolnikova M.V., Gorbacheva N.N. [Soluble receptor for advanced glycation end products and soluble interleukin-4 receptor in plasma and exhaled breath condensate as potential markers of asthma severity in children]. Byulleten' fiziologii i patologii dykhaniya. 2024; (94): 20–28. DOI: 10.36604/1998-5029-2024-94-20-28 (in Russian).

61. Woo S.D., Park H.S., Yang E.M. et al. 8-Iso-prostaglandin F2α as a biomarker of type 2 low airway inflammation and remodeling in adult asthma. Ann. Allergy Asthma Immunol. 2024; 133 (1): 73–80. DOI: 10.1016/j.anai.2024.04.007.

62. Jeong J.S., Kim J.S., Kim S.R., Lee Y.C. Defining bronchial asthma with phosphoinositide 3-kinase delta activation: towards endotype-driven management. Int. J. Mol. Sci. 2019; 20 (14): 3525. DOI: 10.3390/ijms20143525.

63. Yeh Y.L., Su M.W., Chiang B.L. et al. Genetic profiles of transcriptomic clusters of childhood asthma determine specific severe subtype. Clin. Exp. Allergy. 2018; 48 (9): 1164–1172. DOI: 10.1111/cea.13175.

64. Zein J., Owora A., Kim H.J. et al. Asthma among children with primary ciliary dyskinesia. JAMA Netw. Open. 2024; 7 (12): e2449795. DOI: 10.1001/jamanetworkopen.2024.49795.

65. Farahani R., Sherkat R., Hakemi M.G. et al. Cytokines (interleukin-9, IL-17, IL-22, IL-25 and IL-33) and asthma. Adv. Biomed. Res. 2014; 3: 127. DOI: 10.4103/2277-9175.133249.

66. Saeki M., Nishimura T., Kitamura N. et al. Potential mechanisms of T cell-mediated and eosinophil-independent bronchial hyperresponsiveness. Int. J. Mol. Sci. 2019; 20 (12): 2980. DOI: 10.3390/ijms20122980.

67. Saeki M., Kaminuma O., Hiroi T. [A new mechanism of bronchial hyperresponsiveness revealed by murine Th9 cell-transferred asthma model]. Nihon Yakurigaku Zasshi. 2020; 155 (6): 375–380. DOI: 10.1254/fpj.20054 (in Japanese).

68. Tokura Y., Hayano S. Subtypes of atopic dermatitis: from phenotype to endotype. Allergol. Int. 2022; 71 (1): 14–24. DOI: 10.1016/j.alit.2021.07.003.

69. Tamasauskiene L., Sitkauskiene B. Role of Th22 and IL-22 in pathogenesis of allergic airway diseases: Pro-inflammatory or anti-inflammatory effect? Pediatr. Neonatol. 2018; 59 (4): 339–344. DOI: 10.1016/j.pedneo.2017.11.020.

70. Radzikowska U., Baerenfaller K., Cornejo-Garcia J.A. et al. Omics technologies in allergy and asthma research: An EAACI position paper. Allergy. 2022; 77 (10): 2888–2908. DOI: 10.1111/all.15412.

71. Gautam Y., Johansson E., Mersha T.B. Multi-omics profiling approach to asthma: an evolving paradigm. J. Pers. Med. 2022; 12 (1): 66. DOI: 10.3390/jpm12010066.

72. Gomez J., Nino G. Uncovering transcriptional endotypes in pediatric asthma – a new lens on biomarker-based clinical stratification. JAMA. 2025; 333 (4): 293–294. DOI: 10.1001/jama.2024.26977.

73. Li M., Zhu W., Saeed U. et al. Identification of the molecular subgroups in asthma by gene expression profiles: airway inflammation implications. BMC Pulm. Med. 2022; 22 (1): 29. DOI: 10.1186/s12890-022-01824-3.

74. Su M.W., Lin W.C., Tsai C.H. Childhood asthma clusters reveal neutrophil-predominant phenotype with distinct gene expression. Allergy. 2018; 73 (10): 2024–2032. DOI: 10.1111/all.13439.

75. Yue M., Gaietto K., Han Y.Y. et al. Transcriptomic profiles in nasal epithelium and asthma endotypes in youth. JAMA. 2025; 333 (4): 307–318. DOI: 10.1001/jama.2024.22684.

76. Kelly R.S., Mendez K.M., Huang M. et al. Metabo-endotypes of asthma reveal differences in lung function: discovery and validation in two TOPMed cohorts. Am. J. Respir. Crit. Care Med. 2022; 205 (3): 288–299. DOI: 10.1164/rccm.202105-1268OC.

77. Sinha A., Desiraju K., Aggarwal K. et al. Exhaled breath condensate metabolome clusters for endotype discovery in asthma. J. Transl. Med. 2017; 15 (1): 262. DOI: 10.1186/s12967-017-1365-7.

78. Ooka T., Raita Y., Fujiogi M. et al. Proteomics endotyping of infants with severe bronchiolitis and risk of childhood asthma. Allergy. 2022; 77 (11): 3350–3361. DOI: 10.1111/all.15390.

79. Fleming L., Tsartsali L., Wilson N. et al. Sputum inflammatory phenotypes are not stable in children with asthma. Thorax. 2012; 67 (8): 675–681. DOI: 10.1136/thoraxjnl-2011-201064.

80. Salvermoser M., Zeber K., Boeck A. et al. Childhood asthma: Novel endotyping by cytokines, validated through sensitization profiles and clinical characteristics. Clin. Exp. Allergy. 2021; 51 (5): 654–665. DOI: 10.1111/cea.13858.


Supplementary files

Review

For citations:


Tereshchenko S.Yu., Smolnikova M.V. Phenotypes and endotypes of asthma in children. PULMONOLOGIYA. 2025;35(5):623-634. (In Russ.) https://doi.org/10.18093/0869-0189-2025-35-5-623-634

Views: 19


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)