Preview

PULMONOLOGIYA

Advanced search

Respiratory sarcopenia: aspects of pathogenesis, approaches to diagnosis

https://doi.org/10.18093/0869-0189-2024-4271

Abstract

The severe course of infectious and inflammatory diseases of the respiratory system, high rates of morbidity and mortality among the elderly and senile aged people may be associated with respiratory sarcopenia, a new nosological form that describes age-related changes in the strength and structure of the respiratory muscles.

The aim of the review is to update the data of open access scientific sources on aspects of pathogenesis and diagnostic approaches to respiratory sarcopenia. Foreign and domestic scientific publications on this topic were analyzed from 2019 to the present. The mechanisms of respiratory sarcopenia pahogenesis were assessed in the light of its relationship with whole body sarcopenia, age-related mechanisms of aging of the respiratory system as a whole, risk factors and lifestyle aspects of the elderly. The currently proposed diagnostic algorithm for respiratory sarcopenia is considered in detail.

Conclusion. Age-related changes in muscle tissue also affect the respiratory muscles. Whole-body sarcopenia, according to some authors, may be accompanied by respiratory sarcopenia. The proposed terminology and algorithm for diagnosing this pathology require additional data accumulation and further discussion.

About the Authors

V. A. Sergeeva
Federal State Budgetary Educational Institution of Higher Education “Saratov State Medical University named after V.I. Razumovsky”, Healthcare Ministry of the Russian Federation
Russian Federation

Victoria A. Sergeeva - Candidate of Medicine, Assistant Professor, Department of Therapy with Courses of Cardiology, Functional Diagnostics and Geriatrics.

Ul. Bol’shaya Kazach’ya 112, Saratov, 410012; tel.: (8452) 51-15-34


Competing Interests:

No conflict of interest has been declared by the authors



N. K. Runikhina
Separate structural division “Russian Gerontological Scientific and Clinical Center”, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation
Russian Federation

Nadezhda K. Runikhina - Doctor of Medicine, Professor, Department of Aging Diseases, Faculty of Continuing Professional Education, Deputy Director for Geriatric Work, Separate structural division “Russian Gerontological Scientific and Clinical Center”.

Ul. 1st Leonova, buid. 16, Moscow, 129226; tel(499) 187-51-88


Competing Interests:

No conflict of interest has been declared by the authors



References

1. Population Division. World Population Prospects 2019. Available at: https://population.un.org/wpp2019/ [Accessed: February 02, 2023].

2. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M. et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing. 2010; 39 (4): 412–423. DOI: 10.1093/ageing/afq034.

3. Cruz-Jentoft A.J., Bahat G., Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48 (1): 16–31. DOI: 10.1093/ageing/afy169.

4. Chen L.K., Liu L.K., Woo J. et al. Sarcopenia in Asia: consensus report of the Asian Working Group for sarcopenia. J. Am. Med. Dir. Assoc. 2014; 15 (2): 95–101. DOI: 10.1016/j.jamda.2013.11.025.

5. Chen L.K., Woo J., Assantachai P. et al. Asian Working Group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020; 21 (3): 300–307.e2. DOI: 10.1016/j.jamda.2019.12.012.

6. Sergeeva V.A., Lipatova T.E. [Sarcopenia associated with COVID-19]. Profilakticheskaya Meditsina. 2022; 25 (11): 105–112. DOI: 10.17116/profmed202225111105 (in Russian).

7. Kera T., Kawai H., Hirano H. et al. Definition of respiratory sarcopenia with peak expiratory flow rate. J. Am. Med. Dir. Assoc. 2019; 20 (8): 1021–1025. DOI: 10.1016/j.jamda.2018.12.013.

8. Nucci R.A.B., de Souza R.R., Suemoto C.K. et al. Diaphragm muscle structure in the elderly: Findings from an autopsy study. Acta Histochemica. 2020; 122 (2): 151487. DOI: 10.1016/j.acthis.2019.151487.

9. Bordoni B., Morabito B., Simonelli M. Ageing of the diaphragm muscle. Cureus. 2020; 12 (1): e6645. DOI: 10.7759/cureus.6645.

10. Greising S.M., Ottenheijm C.A.C., O’Halloran K.D., Barreiro E. Diaphragm plasticity in aging and disease: therapies for muscle weakness go from strength to strength. J. Appl. Physiol. (1985). 2018; 125 (2): 243–253. DOI: 10.1152/japplphysiol.01059.2017.

11. Grigorieva I.I., Raskina T.A., Letaeva M.V. et al. [Sarcopenia: pathogenesis and diagnosis]. Fundamental'naya i klinicheskaya meditsina. 2019; 4 (4): 105–116. DOI: 10.23946/2500-0764-2019-4-4-105-116 (in Russian).

12. Korhonen M.T., Cristea A., Alén M. et al. Aging, muscle fiber type, and contractile function in sprint-trained athletes. J. Appl. Physiol. (1985). 2006; 101 (3): 906–917. DOI: 10.1152/japplphysiol.00299.2006.

13. Gonzalez-Freire M., de Cabo R., Studenski S.A., Ferrucci L. The neuro-muscular junction: aging at the crossroad between nerves and muscle. Front. Aging Neurosci. 2014; 6: 208. DOI: 10.3389/fnagi.2014.00208.

14. Priego T., Martín A.I., González-Hedström D. et al. Role of hormones in sarcopenia. Vitam. Horm. 2021; 115: 535–570. DOI: 10.1016/bs.vh.2020.12.021.

15. Di Felice V., Coletti D., Seelaender M. Editorial: myokines, adipokines, cytokines in muscle pathophysiology. Front. Physiol. 2020; 11: 592856. DOI: 10.3389/fphys.2020.592856.

16. Kim S.H., Shin M.J., Shin Y.B., Kim K.U. Sarcopenia associated with chronic obstructive pulmonary disease. J. Bone Metab. 2019; 26 (2): 65–74. DOI: 10.11005/jbm.2019.26.2.65.

17. Musumeci G. Sarcopenia and exercise “The state of the art”. J. Funct. Morphol. Kinesiol. 2017; 2 (4): 40. DOI: 10.3390/jfmk2040040.

18. Okazaki T., Ebihara S., Mori T. et al. Association between sarcopenia and pneumonia in older people. Geriatr. Gerontol. Int. 2020; 20 (1): 7–13. DOI: 10.1111/ggi.13839.

19. Wiedmer P., Jung T., Castro J.P. et al. Sarcopenia molecular mechanisms and open questions. Ageing Res. Rev. 2021; 65: 101200. DOI: 10.1016/j.arr.2020.101200.

20. Amarasekera A.T., Chang D., Schwarz P., Tan T.C. Vascular endothelial dysfunction may be an early predictor of physical frailty and sarcopenia: a meta-analysis of available data from observational studies. Exp. Gerontol. 2021; 148: 111260. DOI: 10.1016/j.exger.2021.111260.

21. Marzetti E., Calvani R., DuPree J. et al. Late-life enalapril administration induces nitric oxide-dependent and independent metabolic adaptations in the rat skeletal muscle. Age (Dordr.). 2013; 35 (4): 1061–1075. DOI: 10.1007/s11357-012-9428-4.

22. Hendrickse P., Degens H. The role of the microcirculation in muscle function and plasticity. J. Muscle Res. Cell Motil. 2019; 40 (2): 127–140. DOI: 10.1007/s10974-019-09520-2.

23. Skloot G.S. The effects of aging on lung structure and function. Clin. Geriatr. Med. 2017; 33 (4): 447–457. DOI: 10.1016/j.cger.2017.06.001.

24. Tran D., Rajwani K., Berlin D.A. Pulmonary effects of aging. Curr. Opin. Anaesthesiol. 2018; 31 (1): 19–23. DOI: 10.1097/ACO.0000000000000546.

25. van Moorsel C.H.M. Trade-offs in aging lung diseases: a review on shared but opposite genetic risk variants in idiopathic pulmonary fibrosis, lung cancer and chronic obstructive pulmonary disease. Curr. Opin. Pulm. Med. 2018; 24 (3): 309–317. DOI: 10.1097/MCP.0000000000000476.

26. Cassart M., Pettiaux N., Gevenois P.A. et al. Effect of chronic hyperinflation on diaphragm length and surface area. Am. J. Respir. Crit. Care Med. 1997; 156 (2, Pt 1): 504–508. DOI: 10.1164/ajrccm.156.2.9612089.

27. Orozco-Levi M. Structure and function of the respiratory muscles in patients with COPD: impairment or adaptation? Eur. Respir. J. Suppl. 2003; 46: 41–51s. DOI: 10.1183/09031936.03.00004607.

28. Rochester D.F., Braun N.M., Arora N.S. Respiratory muscle strength in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 1979; 119 (2, Pt 2): 151–154. DOI: 10.1164/arrd.1979.119.2P2.151.

29. Teramoto S., Ishii T., Yamamoto H. et al. Significance of chronic cough as a defence mechanism or a symptom in elderly patients with aspiration and aspiration pneumonia. Eur. Respir. J. 2005; 25 (1): 210–211. DOI: 10.1183/09031936.04.00111404.

30. Ebihara S., Ebihara T. Cough in the elderly: a novel strategy for preventing aspiration pneumonia. Pulm. Pharmacol. Ther. 2011; 24 (3): 318–323. DOI: 10.1016/j.pupt.2010.10.003.

31. Watsford M.L., Murphy A.J., Pine M.J., Coutts A.J. The effect of habitual exercise on respiratory-muscle function in older adults. J. Aging Phys. Act. 2005; 13 (1): 34–44. DOI: 10.1123/japa.13.1.34.

32. Choe E.K., Lee Y., Kang H.Y. et al. Association between CT-Measured abdominal skeletal muscle mass and pulmonary function. J. Clin. Med. 2019; 8 (5): 667. DOI: 10.3390/jcm8050667.

33. Sergeeva V.A. [Respiratory pathophysiology in obesity]. Pul'monologiya. 2021; 31 (6): 808–815. DOI: 10.18093/0869-0189-2021-31-6-808-815 (in Russian).

34. Harrington J., Lee-Chiong T. Obesity and aging. Clin. Chest Med. 2009; 30 (3): 609–614. DOI: 10.1016/j.ccm.2009.05.011.

35. Nishikawa H., Asai A., Fukunishi S. et al. Metabolic syndrome and sarcopenia. Nutrients. 2021; 13 (10): 3519. DOI: 10.3390/nu13103519.

36. Lima T.R.L., Almeida V.P., Ferreira A.S. et al. Handgrip strength and pulmonary disease in the elderly: what is the link? Aging Dis. 2019; 10 (5): 1109–1129. DOI: 10.14336/AD.2018.1226.

37. Norman K., Haß U., Pirlich M. Malnutrition in older adults-recent advances and remaining challenges. Nutrients. 2021; 13 (8): 2764. DOI: 10.3390/nu13082764.

38. Nagano A., Wakabayashi H., Maeda K. et al. Respiratory sarcopenia and sarcopenic respiratory disability: concepts, diagnosis, and treatment. J. Nutr. Health Aging. 2021; 25 (4): 507–515. DOI: 10.1007/s12603-021-1587-5.

39. Brandstetter R.D., Kazemi H. Aging and the respiratory system. Med. Clin. North Am. 1983; 67 (2): 419–431. DOI: 10.1016/s0025-7125(16)31212-3.

40. Williams N. The MRC breathlessness scale. Occup. Med. (Lond). 2017; 67 (6): 496–497. DOI: 10.1093/occmed/kqx086.

41. Avdeev S.N. [Assessing respiratory muscle strength in clinical practice]. Pulmonologiya i allergologiya. 2008; (4): 12–17. Available at: http://www.atmosphere-ph.ru/modules/Magazines/articles/pulmo/ap_4_2008_12.pdf (in Russian).

42. Black L.F., Hyatt R.E. Maximal respiratory pressures: normal values and relationship to age and sex. Am. Rev. Respir. Dis. 1969; 99 (5): 696–702. DOI: 10.1164/arrd.1969.99.5.696.

43. Segizbaeva M.O., Aleksandrova N.P. [Assessment of the functional state of respiratory muscles: methodological aspects and data interpretation]. Fiziologiya cheloveka. 2019; 45 (2): 213–224. DOI: 10.1134/S0131164619010120 (in Russian).

44. Ro H.J., Kim D.K., Lee S.Y. et al. Relationship between respiratory muscle strength and conventional sarcopenic indices in young adults: a preliminary study. Ann. Rehabil. Med. 2015; 39 (6): 880–887. DOI: 10.5535/arm.2015.39.6.880.

45. Sawaya Y., Shiba T., Ishizaka M. et al. Sarcopenia is not associated with inspiratory muscle strength but with expiratory muscle strength among older adults requiring long-term care/support. PeerJ. 2022; 10: e12958. DOI: 10.7717/peerj.12958.

46. Kera T., Kawai H., Ejiri M. et al. Comparison of characteristics of definition criteria for respiratory sarcopenia-the otassya study. Int. J. Environ. Res. Public Health. 2022; 19 (14): 8542. DOI: 10.3390/ijerph19148542.

47. Bahat G., Tufan A., Ozkaya H. et al. Relation between hand grip strength, respiratory muscle strength and spirometric measures in male nursing home residents. Aging Male. 2014; 17 (3): 136–140. DOI: 10.3109/13685538.2014.936001.

48. Nève V., Edmé J.L., Matran R. Earlier decline in sniff nasal inspiratory pressure than peak expiratory flow in children with Duchenne muscular dystrophy. Eur. Respir. J. 2014; 44 (5): 1361–1363. DOI: 10.1183/09031936.00043214.

49. Ju S., Lee S.J., Park M.J. et al. Clinical importance of cross-sectional area of intercostal muscles in patients with chronic obstructive pulmonary disease. Clin. Respir. J. 2018; 12 (3): 939–947. DOI: 10.1111/crj.12609.

50. Zambon M., Greco M., Bocchino S. et al. Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: a systematic review. Intensive Care Med. 2017; 43 (1): 29–38. DOI: 10.1007/s00134-016-4524-z.


Review

For citations:


Sergeeva V.A., Runikhina N.K. Respiratory sarcopenia: aspects of pathogenesis, approaches to diagnosis. PULMONOLOGIYA. 2024;34(6):869-878. (In Russ.) https://doi.org/10.18093/0869-0189-2024-4271

Views: 248


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)