Персонифицированный выбор генно-инженерных иммунобиологических препаратов для лечения тяжелой бронхиальной астмы: инструменты реальной практики и новые перспективы
https://doi.org/10.18093/0869-0189-2024-34-6-788-800
Аннотация
В настоящее время наиболее предпочтительным подходом к лечению неконтролируемой тяжелой бронхиальной астмы (ТБА) является применение генно-инженерной биологической терапии (ГИБП). Препараты данной группы высокоэффективны и безопасны, однако следует учитывать, что они не универсальны и блокируют различные звенья патогенеза бронхиальной астмы (БА). Также выявлены различия в эффективности в отношении сопутствующих патологий. В связи с этим выбор таргетного препарата должен быть не только персонифицированным, но и эндотипи фенотип-ориентированным.
Целью данного обзора явился анализ литературных данных о ГИБП, используемых в настоящее время в терапии ТБА, инструментах фенои эндотипирования, применяемых в реальной практике в целях персонализированного выбора таргетных препаратов, а также перспективных направлениях исследований в данной области.
Заключение. В настоящее время для фенои эндотипирования ТБА применяются методы лабораторного и инструментального обследования, благодаря которым выявляется ключевой патогенетический фактор развития заболевания, на основании чего делается выбор биологического препарата. Однако биомаркеры, определяемые в ходе рутинного обследования, не являются абсолютными и имеют исключения. Также в ряде случаев, когда у пациента с ТБА определяется смешанный фенотип заболевания, который соответствует критериям назначения всех имеющихся ГИБП, решение о выборе таргетной терапии основывается на субъективном определении превалирующего механизма развития заболевания. Актуальным направлением будущих исследований остается поиск биомаркеров, прогнозирующих эффект того или иного ГИБП. Комбинированное использование результатов клинического, молекулярно-генетического обследования и оценки эпигенетических маркеров может помочь в решении данной задачи. В данном обзоре представлены актуальные данные о ГИБП, используемых в настоящее время в терапии ТБА, инструментах фенои эндотипирования, применяемых в реальной практике, описаны перспективные направления исследований определения эпигенетических биомаркеров.
Ключевые слова
Об авторах
К. С. ПавловаРоссия
Павлова Ксения Сергеевна – к. м. н., врач-аллерголог, ведущий научный сотрудник отделения бронхиальной астмы.
115522, Москва, Каширское шоссе, 24, стр. 2; тел.: (499) 311-67-78
Конфликт интересов:
Конфликт интересов авторами не заявлен
Д. О. Тимошенко
Россия
Тимошенко Дарья Олеговна – м. н. с. отделения бронхиальной астмы.
115522, Москва, Каширское шоссе, 24, стр. 2; тел.: (499) 311-67-78
Конфликт интересов:
Конфликт интересов авторами не заявлен
А. А. Осокин
Россия
Осокин Андрей Александрович – студент медико-биологического факультета.
117997, Москва, ул. Островитянова, 1; тел. (966)129-74-28
Конфликт интересов:
Конфликт интересов авторами не заявлен
И. А. Кофиади
Россия
Кофиади Илья Андреевич – д. б. н., профессор Российской академии наук, заведующий лабораторией молекулярной иммуногенетики ГНЦ “Институт иммунологии”» Федерального медико-биологического агентства; профессор кафедры иммунологии медико-биологического факультета РНИМУ имени Н.И. Пирогова.
115522, Москва, Каширское шоссе, 24, стр. 2; 117997, Москва, ул. Островитянова, 1; тел.: (499) 311-67-78
Конфликт интересов:
Конфликт интересов авторами не заявлен
О. М. Курбачева
Россия
Курбачева Оксана Михайловна – д. м. н., профессор, заведующая отделением бронхиальной астмы ГНЦ “Институт иммунологии”» Федерального медико-биологического агентства; доцент кафедры клинической аллергологии и иммунологии РУМ.
115522, Москва, Каширское шоссе, 24, стр. 2; 127006, Москва, ул. Долгоруковская, 4; тел.: (499) 311-67-78
Конфликт интересов:
Конфликт интересов авторами не заявлен
Список литературы
1. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2023. Available at: https://ginasthma.org/wp-content/uploads/2023/05/GINA-2023-Full-Report-2023-WMS.pdf [Accessed: January 10, 2024.
2. Министерство здравоохранения Российской Федерации. Клинические рекомендации. Бронхиальная астма. 2021. Доступно на: https://cr.minzdrav.gov.ru/schema/359_2 [Дата обращения: 10.01.24].
3. Хаитов М.Р., Шиловский И.П. Антицитокиновая терапия аллергических заболеваний: молекулярно-иммунологические механизмы и клинические основы. М.: Медиа Сфера; 2021.
4. Ray A., Raundhal M., Oriss T.B. et al. Current concepts of severe asthma. J. Clin. Investigation. 2016; 126 (7): 2394–2403. DOI: 10.1172/jci84144.
5. Brusselle G.G., Maes T., Bracke K.R. Eosinophils in the spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nat. Med. 2013; 19 (8): 977–979. DOI: 10.1038/nm.3300.
6. Курбачева О.М., Дынева М.Е., Шиловский И.П. и др. Особенности молекулярных механизмов патогенеза бронхиальной астмы в сочетании с полипозным риносинуситом. Пульмонология. 2021; 31 (1): 7–19. DOI: 10.18093/0869-0189-2021-31-1-7-19.
7. Buhl R., Humbert M., Bjermer L. et al. Severe eosinophilic asthma: a roadmap to consensus. Eur. Respir. J. 2017; 49 (5): 1700634. DOI: 10.1183/13993003.00634-2017.
8. Potaczek D.P., Trąd G., Sanak M. et al. Local and systemic production of pro-inflammatory eicosanoids is inversely related to sensitization to aeroallergens in patients with aspirin-exacerbated respiratory disease. J. Personalized Med. 2022; 12 (3): 447. DOI: 10.3390/jpm12030447.
9. Nair P., Prabhavalkar K.S. Neutrophilic asthma and potentially related target therapies. Curr. Drug Targets. 2020; 21 (4): 374–388. DOI: 10.2174/1389450120666191011162526.
10. Шиловский И.П., Ерошкина Д.В., Бабахин А.А., Хаитов М.Р. Антицитокиновая терапия бронхиальной астмы. Молекулярная биология. 2017; 51 (1): 3–17. DOI: 10.7868/S0026898416060197.
11. Agache I., Akdis C.A., Akdis M. et al. EAACI biologicals guidelines – recommendations for severe asthma. Allergy. 2021; 76 (1): 14–44. DOI: 10.1111/all.14425.
12. Sardon-Prado O., Diaz-Garcia C., Corcuera-Elosegui P. et al. Severe asthma and biological therapies: now and the future. J. Clin. Med. 2023; 12 (18): 5846. DOI: 10.3390/jcm12185846.
13. Rogers L., Jesenak M., Bjermer L. et al. Biologics in severe asthma: a pragmatic approach for choosing the right treatment for the right patient. Respir. Med. 2023; 218: 107414. DOI: 10.1016/j.rmed.2023.107414.
14. Humbert M., Beasley R., Ayres J. et al. Benefits of Omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy. 2005; 60 (3): 309–316. DOI: 10.1111/j.1398-9995.2004.00772.x.
15. Castro M., Corren J., Pavord I.D. et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. New England J. Med. 2018; 378 (26): 2486–2496. DOI: 10.1056/NEJMoa1804092.
16. Rabe K.F., Nair P., Brusselle G. et al. Efficacy and safety of Dupilumab in glucocorticoid-dependent severe asthma. N. Engl. J. Med. 2018; 378 (26): 2475–2485. DOI: 10.1056/NEJMoa1804093.
17. Ortega H.G., Liu M.C., Pavord I.D. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 2014; 371 (13): 1198–1207. DOI: 10.1056/NEJMoa1403290.
18. Chupp G.L., Bradford E.S., Albers F.C. et al. Efficacy of Mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): a randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir. Med. 2017; 5 (5): 390–400. DOI: 10.1016/S2213-2600(17)30125-X.
19. Bel E.H., Wenzel S.E., Thompson P.J. et al. Oral glucocorticoid-sparing effect of Mepolizumab in eosinophilic asthma. N. Engl. J. Medicine. 2014; 371 (13): 1189–1197. DOI: 10.1056/NEJMoa1403291.
20. Castro M., Zangrilli J., Wechsler M.E. et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir. Med. 2015; 3 (5): 355–366. DOI: 10.1016/S2213-2600(15)00042-9.
21. Bleecker E.R., FitzGerald J.M., Chanez P. et al. Efficacy and safety of Benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016; 388 (10056): 2115–2127. DOI: 10.1016/S0140-6736(16)31324-1.
22. FitzGerald J.M., Bleecker E.R., Nair P. et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016; 388 (10056): 2128–2141. DOI: 10.1016/S0140-6736(16)31322-8.
23. Nair P., Wenzel S., Rabe K.F. et al. Oral glucocorticoid-sparing effect of Benralizumab in severe asthma. N. Engl. J. Med. 2017; 376 (25): 2448–2458. DOI: 10.1056/NEJMoa1703501.
24. Menzies-Gow A., Corren J., Bourdin A. et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N. Engl. J. Med. 2021; 384 (19): 1800–1809. DOI: 10.1056/NEJMoa2034975.
25. Wechsler M.E., Menzies-Gow A., Brightling C.E. et al. Evaluation of the oral corticosteroid-sparing effect of Tezepelumab in adults with oral corticosteroid-dependent asthma (SOURCE): a randomised, placebo-controlled, phase 3 study. Lancet Respir. Med. 2022; 10 (7): 650–660. DOI: 10.1016/S2213-2600(21)00537-3.
26. Strunk R.C., Bloomberg G.R. Omalizumab for asthma. N. Engl. J. Med. 2006; 354 (25): 2689–2695. DOI: 10.1056/NEJMct055184.
27. Prussin C., Griffith D.T., Boesel K.M. et al. Omalizumab treatment downregulates dendritic cell FcεRI expression. J. Allergy Clin. Immunol. 2003; 112 (6): 1147–1154. DOI: 10.1016/j.jaci.2003.10.003.
28. Djukanović R., Wilson S.J., Kraft M. et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am. J. Respir. Crit. Care Med. 2004; 170 (6): 583–593. DOI: 10.1164/rccm.200312-1651OC.
29. Busse W., Corren J., Lanier B.Q. et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J. Allergy Clin. Immunol. 2001; 108 (2): 184–190. DOI: 10.1067/mai.2001.117880.
30. Rodrigo G.J., Neffen H., Castro-Rodriguez J.A. Efficacy and safety of subcutaneous Omalizumab vs placebo as add-on therapy to corticosteroids for children and adults with asthma: a systematic review. Chest. 2011; 139 (1): 28–35. DOI: 10.1378/chest.10-1194.
31. Deschildre A., Marguet C., Salleron J. et al. Add-on Omalizumab in children with severe allergic asthma: a 1-year real life survey. Eur. Respir. J. 2013; 42 (5): 1224–1233. DOI: 10.1183/09031936.00149812.
32. Nair P. Anti-interleukin-5 monoclonal antibody to treat severe eosinophilic asthma. N. Engl. J. Med. 2014; 371 (13): 1249–1251. DOI: 10.1056/NEJMe1408614.
33. Nair P., Pizzichini M.M., Kjarsgaard M. et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 2009; 360 (10): 985–993. DOI: 10.1056/NEJMoa0805435.
34. Albers F.C., Papi A., Taillé C. et al. Mepolizumab reduces exacerbations in patients with severe eosinophilic asthma, irrespective of body weight/body mass index: meta-analysis of MENSA and MUSCA. Respir. Res. 2019; 20 (1): 169. DOI: 10.1186/s12931-019-1134-7.
35. Khurana S., Brusselle G.G., Bel E.H. et al. Long-term safety and clinical benefit of Mepolizumab in patients with the most severe eosinophilic asthma: the COSMEX study. Clin. Ther. 2019; 41 (10): 2041–2056. DOI: 10.1016/j.clinthera.2019.07.007.
36. Lugogo N., Domingo C., Chanez P. et al. Long-term efficacy and safety of Mepolizumab in patients with severe eosinophilic asthma: a multi-center, open-label, phase IIIb study. Clin. Ther. 2016; 38 (9): 2058–2070.e1. DOI: 10.1016/j.clinthera.2016.07.010.
37. Han J.K., Bachert C., Fokkens W. et al. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2021; 9 (10): 1141–1153. DOI: 10.1016/S2213-2600(21)00097-7.
38. Roufosse F., Kahn J.E., Rothenberg M.E. et al. Efficacy and safety of Mepolizumab in hypereosinophilic syndrome: a phase III, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 2020; 146 (6): 1397–1405. DOI: 10.1016/j.jaci.2020.08.037.
39. Wechsler M.E., Akuthota P., Jaune D. et al. Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis. N. Engl. J. Med. 2017; 376 (20): 1921–1932. DOI: 10.1056/NEJMoa1702079.
40. Castro M., Mathur S., Hargreave F. et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am. J. Respir. Crit. Care Med. 2011; 184 (10): 1125–1132. DOI: 10.1164/rccm.201103-0396OC.
41. Corren J., Weinstein S., Janka L. Phase 3 study of Reslizumab in patients with poorly controlled asthma: effects across a broad range of eosinophil counts. Chest. 2016; 150 (4): 799–810. DOI: 10.1016/j.chest.2016.03.018.
42. Bjermer L., Lemiere C., Maspero J. et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil levels: a randomized phase 3 study. Chest. 2016; 150 (4): 789–798. DOI: 10.1016/j.chest.2016.03.032.
43. Bourdin A., Shaw D., Menzies-Gow A. et al. Two-year integrated steroid-sparing analysis and safety of Benralizumab for severe asthma. J. Asthma. 2021; 58 (4): 514–522. DOI: 10.1080/02770903.2019.1705333.
44. Nair P., Wenzel S., Rabe K.F. et al. Oral glucocorticoid-sparing effect of Benralizumab in severe asthma. N. Engl. J. Med. 2017; 376 (25): 2448–2458. DOI: 10.1056/NEJMoa1703501.
45. Cottu A., Groh M., Desaintjean C. et al. Benralizumab for eosinophilic granulomatosis with polyangiitis. Ann. Rheum. Dis. 2023; 82 (12): 1580–1586. DOI: 10.1136/ard-2023-224624.
46. Kuang F.L., Legrand F., Makiya M. et al. Benralizumab for PDGFRA-negative hypereosinophilic syndrome. N. Engl. J. Med. 2019; 380 (14): 1336–1346. DOI: 10.1056/NEJMoa1812185.
47. Курбачева О.М., Дынева М.Е., Ильина Н.И. Дупилумаб: основные аспекты применения при T2-опосредованных заболеваниях. Медицинский совет. 2021; (16): 186–196. DOI: 10.21518/2079-701X-2021-16-186-196.
48. Дынева М.Е., Аминова Г.Э., Курбачева О.М., Ильина Н.И. Дупилумаб: новые возможности в терапии бронхиальной астмы и полипозного риносинусита. Российский аллергологический журнал. 2021; 18 (1): 18–31. DOI: 10.36691/RJA1408.
49. Tozawa H., Kanki Y., Suehiro J. et al. Genome-wide approaches reveal functional interleukin-4-inducible STAT6 binding to the vascular cell adhesion molecule 1 promoter. Mol. Cell. Biol. 2011; 31 (11): 2196–2209. DOI: 10.1128/MCB.01430-10.
50. Barthel S.R., Johansson M.W., McNamee D.M., Mosher D.F. Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma. J. Leukoc. Biol. 2008; 83 (1): 1–12. DOI: 10.1189/jlb.0607344.
51. Koskeridis F., Evangelou E., Ntzani E.E. et al. Treatment with Dupilumab in patients with atopic dermatitis: systematic review and meta-analysis. J. Cutaneous Med. Surgery. 2022; 26 (6): 613–621. DOI: 10.1177/12034754221130969.
52. Dellon E.S., Rothenberg M.E., Collins M.H. et al. Dupilumab in adults and adolescents with eosinophilic esophagitis. N. Engl. J. Med. 2022; 387 (25): 2317–2330. DOI: 10.1056/NEJMoa2205982.
53. Yosipovitch G., Mollanazar N., Ständer S. et al. Dupilumab in patients with prurigo nodularis: two randomized, double-blind, placebo-controlled phase 3 trials. Nat. Med. 2023; 29 (5): 1180–1190. DOI: 10.1038/s41591-023-02320-9.
54. Bachert C., Han J.K., Desrosiers M. et al. Efficacy and safety of Dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019; 394 (10209): 1638–1650. DOI: 10.1016/S0140-6736(19)31881-1.
55. Olaguibel J.M., Sastre J., Rodríguez J.M., Del Pozo V. Eosinophilia induced by blocking the IL-4/IL-13 pathway: potential mechanisms and clinical outcomes. J. Investig. Allergol. Clin. Immunol. 2022; 32 (3): 165–180. DOI: 10.18176/jiaci.0823.
56. Agache I., Beltran J., Akdis C. et al. Efficacy and safety of treatment with biologicals (Benralizumab, Dupilumab, Mepolizumab, Omalizumab and Reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI guidelines – recommendations on the use of biologicals in severe asthma. Allergy. 2020; 75 (5): 1023–1042. DOI: 10.1111/all.14221.
57. Valent P., Klion A.D., Roufosse F. et al. Proposed refined diagnostic criteria and classification of eosinophil disorders and related syndromes. Allergy. 2023; 78 (1): 47–59. DOI: 10.1111/all.15544.
58. Loewenthal L., Menzies-Gow A. FeNO in asthma. Semin. Respir. Crit. Care Med. 2022; 43 (5): 635–645. DOI: 10.1055/s-0042-1743290.
59. Alizadeh Z., Mortaz E., Adcock I., Moin M. Role of epigenetics in the pathogenesis of asthma. Iran. J. Allergy Asthma Immunol. 2017; 16 (2): 82–91. Available at: https://ijaai.tums.ac.ir/index.php/ijaai/article/view/975/718
60. Moore L.D., Le T., Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013; 38 (1): 23–38. DOI: 10.1038/npp.2012.112.
61. Šestáková Š., Šálek C., Remešová H. DNA methylation validation methods: a coherent review with practical comparison. Biol. Proced. Online. 2019; 21: 19. DOI: 10.1186/s12575-019-0107-z.
62. Tiwari D., Gupta P. Nuclear receptors in asthma: empowering classical molecules against a contemporary ailment. Front. Immunol. 2021; 11: 594433. DOI: 10.3389/fimmu.2020.594433.
63. Wieczfinska J., Kacprzak D., Pospiech K. et al. The whole-genome expression analysis of peripheral blood mononuclear cells from aspirin sensitive asthmatics versus aspirin tolerant patients and healthy donors after in vitro aspirin challenge. Respir. Res. 2015; 16: 147. DOI: 10.1186/s12931-015-0305-4.
64. Christmas P., Weber B.M., McKee M. et al. Membrane localization and topology of leukotriene C4 synthase. J. Biol. Chem. 2002; 277 (32): 28902–28908. DOI: 10.1074/jbc.M203074200.
65. Rådmark O., Samuelsson B. 5-Lipoxygenase: mechanisms of regulation. J. Lipid Res. 2009; (50, Suppl.): S40–45. DOI: 10.1194/jlr.R800062-JLR200.
66. Mandal A.K., Jones P.B., Bair A.M. et al. The nuclear membrane organization of leukotriene synthesis. Proc. Nat. Acad. Sci. USA. 2008; 105 (51): 20434–20439. DOI: 10.1073/pnas.0808211106.
67. Dominas C., Gadkaree S., Maxfield A.Z. et al. Aspirin-exacerbated respiratory disease: a review. Laryngoscope Investigative Otolaryngol. 2020; 5 (3): 360–367. DOI: 10.1002/lio2.387.
68. Dahlin A., Weiss S.T. Genetic and epigenetic components of aspirin-exacerbated respiratory disease. Immunol. Allergy Clin. North Am. 2016; 36 (4): 765–789. DOI: 10.1016/j.iac.2016.06.010.
69. Kanaoka Y., Boyce J.A. Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol. Res. 2014; 6 (4): 288–295. DOI: 10.4168/aair.2014.6.4.288.
Рецензия
Для цитирования:
Павлова К.С., Тимошенко Д.О., Осокин А.А., Кофиади И.А., Курбачева О.М. Персонифицированный выбор генно-инженерных иммунобиологических препаратов для лечения тяжелой бронхиальной астмы: инструменты реальной практики и новые перспективы. Пульмонология. 2024;34(6):788-800. https://doi.org/10.18093/0869-0189-2024-34-6-788-800
For citation:
Pavlova K.S., Timoshenko D.O., Osokin A.A., Kofiadi I.A., Kurbacheva O.M. Personalized approach to the biologicals’ selection in patients with severe asthma: real practice tools and new possibilities. PULMONOLOGIYA. 2024;34(6):788-800. (In Russ.) https://doi.org/10.18093/0869-0189-2024-34-6-788-800