Effect of nitric oxide supply on the morphofunctional state of the lungs during cardiopulmonary bypass modelling: an experimental study
https://doi.org/10.18093/0869-0189-2024-34-3-385-394
Abstract
Perioperative management of cardiac surgery leads to significant morphofunctional impairment of the lungs, cardiopulmonary bypass (CPB) being the principal contributor. The pathophysiological mechanisms associated with cardiopulmonary bypass include ischaemic-reperfusion injury, oxidative stress and systemic inflammation. Nitric oxide is able to limit the associated damage.
Aim of the study: to investigate the effect of nitric oxide supply on morphofunctional state of sheep lungs under simulated cardiopulmonary bypass. Methods. 12 sheep of Altai breed were divided into 2 equal groups. Classical techniques of pulmonary ventilation and cardiopulmonary bypass were simulated in the CPB group. The sheep of the CPB + NO group were supplied with 80 ppm nitric oxide (via respiratory circuit or extracorporeal circulation circuit) during mechanical ventilation and cardiopulmonary bypass. The gas supply started immediately after tracheal intubation and continued until the end of the experiment. In both groups, the cardiopulmonary bypass time was 90 min, after which the sheep were switched to spontaneous circulation and observed for 60 min. Subsequently, blood was sampled, and the animals were withdrawn from the experiment with subsequent collection of histologic specimens.
Results. Statistically significant intergroup differences in P / F-index level before the end of the experiment were found (p = 0.041). Nitric oxide supply was associated with decreased infiltrate density in the lung parenchyma (p = 0.006) and increased alveolar area (p < 0.001).
Conclusion. Supply of NO during modelling of cardiopulmonary bypass in experimental animals improves the morphological and functional state of the lungs by reducing inflammation, vascular changes and damage to the respiratory part of the lungs (structure of alveoli, alveolar passages and pneumocytes). Clinical studies are needed to investigate pulmonoprotective properties of NO in humans.
Keywords
About the Authors
I. V. KravchenkoRussian Federation
Igor V. Kravchenko, Junior Researcher, Laboratory of Critical Care Medicine, Research Institute of Cardiology
ul. Kievskaya 111А, Tomsk, 634012
tel.: (913) 861-99-71
Competing Interests:
The authors declare no conflict of interest
E. A. Gereng
Russian Federation
Elena A. Gereng, Doctor of Medicine, Associate Professor, Professor, Department of Morphology and General Pathology
Moskovskiy trakt 2, Tomsk, 634050
tel.: (913) 871-13-62
Competing Interests:
The authors declare no conflict of interest
Yu. K. Podoksenov
Russian Federation
Yuriy K. Podoksenov, Doctor of Medicine, Leading Researcher, Department of Cardiovascular Surgery, Leading Researcher, Laboratory of Critical Condition Medicine, Research Institute of Cardiology
ul. Kievskaya 111А, Tomsk, 634012
tel.: (905) 990-46-34
Competing Interests:
The authors declare no conflict of interest
M. A. Tyo
Russian Federation
Mark A. Tyo, Junior Researcher, Laboratory of Critical Condition Medicine, Research Institute of Cardiology
ul. Kievskaya 111А, Tomsk, 634012
tel.: (913) 116-76-83
Competing Interests:
The authors declare no conflict of interest
O. N. Serebryakova
Russian Federation
Olga N. Serebryakova, Assistant, Department of Morphology and General Pathology
Moskovskiy trakt 2, Tomsk, 634050
tel.: (905) 090-34-48
Competing Interests:
The authors declare no conflict of interest
M. A. Byankina
Russian Federation
Maria A. Byankina, Student, Faculty of Medicine and Biology
Moskovskiy trakt 2, Tomsk, 634050
tel.: (923) 438-88-45
Competing Interests:
The authors declare no conflict of interest
A. V. Gorokhova
Russian Federation
Anna V. Gorohova, Student, Faculty of Medicine and Biology
Moskovskiy trakt 2, Tomsk, 634050
tel.: (923) 422-69-83
Competing Interests:
The authors declare no conflict of interest
B. N. Kozlov
Russian Federation
Boris N. Kozlov, Doctor of Medicine, Leading researcher Laboratory of Critical Condition Medicine, Head of the Department of Cardiovascular Surgery, Research Institute of Cardiology
ul. Kievskaya 111А, Tomsk, 634012
tel.: (906) 947-92-46
Competing Interests:
The authors declare no conflict of interest
I. V. Milto
Russian Federation
Ivan V. Milto, Doctor of Biology, Acting Head of the Department of Morphology and General Pathology
Moskovskiy trakt 2, Tomsk, 634050
tel.: (913) 858-42-83
Competing Interests:
The authors declare no conflict of interest
N. O. Kamenshchikov
Russian Federation
Nikolay O. Kamenshchikov, Candidate of Medicine, Head of the Laboratory of Critical Condition Medicine, Research Institute of Cardiology
ul. Kievskaya 111А, Tomsk, 634012
tel.: (913) 818-36-57
Competing Interests:
The authors declare no conflict of interest
References
1. Taggart D.P., el-Fiky M., Carter R. et al. Respiratory dysfunction after uncomplicated cardiopulmonary bypass. Ann. Thorac. Surg. 1993; 56 (5): 1123–1128. DOI: 10.1016/0003-4975(95)90029-2.
2. Canet J., Gallart L., Gomar C. et al. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology. 2010; 113 (6): 1338–1350. DOI: 10.1097/ALN.0b013e3181fc6e0a.
3. Ufoaroh C.U., Ele P.U., Anyabolu A.E. et al. Pre-operative pulmonary assessment and risk factors for post-operative pulmonary complications in elective abdominal surgery in Nigeria. Afr. Health Sci. 2019; 19 (1): 1745–1756. DOI: 10.4314/ahs.v19i1.51.
4. Apostolakis E., Filos K.S., Koletsis E., Dougenis D. Lung dysfunction following cardiopulmonary bypass. J. Card. Surg. 2010; 25 (1): 47–55. DOI: 10.1111/j.1540-8191.2009.00823.x.
5. Ng C.S., Wan S., Yim A.P. et al. Pulmonary dysfunction after cardiac surgery. Chest. 2002; 121 (4): 1269–1277. DOI: 10.1378/chest.121.4.1269.
6. Ng C.S., Wan S., Arifi A.A., Yim A.P. Inflammatory response to pulmonary ischemia-reperfusion injury. Surg. Today. 2006; 36 (3): 205–214. DOI: 10.1007/s00595-005-3124-2.
7. Gasparovic H., Plestina S., Sutlic Z. et al. Pulmonary lactate release following cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 2007; 32 (6): 882–887. DOI: 10.1016/j.ejcts.2007.09.001.
8. Kamenshchikov N.O., Diakova M.L., Podoksenov Y.K et al. Potential mechanisms for organoprotective effects of exogenous nitric oxide in an experimental study. Biomedicines. 2024; 12 (4): 719. DOI: 10.3390/biomedicines12040719.
9. Ferrari R.S., Andrade C.F. Oxidative stress and lung ischemia-reperfusion injury. Oxid. Med. Cell. Longev. 2015; 2015: 590987. DOI: 10.1155/2015/590987.
10. Vlastos D., Zeinah M., Ninkovic-Hall G. et al. The effects of ischaemic conditioning on lung ischaemia-reperfusion injury. Respir. Res. 2022; 23 (1): 351. DOI: 10.1186/s12931-022-02288-z.
11. Zakkar M., Guida G., Suleiman M.S., Angelini G.D Cardiopulmonary bypass and oxidative stress. Oxid. Med. Cell Longev. 2015; 2015: 189863. DOI: 10.1155/2015/189863.
12. Chen X., Chen H., Deng R., Shen J. Pros and cons of current approaches for detecting peroxynitrite and their applications. Biomed. J. 2014; 37 (3): 120–126. DOI: 10.4103/2319-4170.134084.
13. Schröder K. NADPH oxidases in redox regulation of cell adhesion and migration. Antioxid. Redox Signal. 2014; 20 (13): 2043–2058. DOI: 10.1089/ars.2013.5633.
14. Evans B.J., Haskard D.O., Finch J.R. et al. The inflammatory effect of cardiopulmonary bypass on leukocyte extravasation in vivo. J. Thorac. Cardiovasc. Surg. 2008; 135 (5): 999–1006. DOI: 10.1016/j.jtcvs.2007.08.071.
15. Talaie T., DiChiacchio L., Prasad N.K. et al. Ischemia-reperfusion injury in the transplanted lung: a literature review. Transplant. Direct. 2021; 7 (2): e652. DOI: 10.1097/TXD.0000000000001104.
16. Eltzschig H.K., Collard C.D. Vascular ischaemia and reperfusion injury. Br. Med. Bull. 2004; 70: 71–86. DOI: 10.1093/bmb/ldh025.
17. Dixon J.T., Gozal E., Roberts A.M. Platelet-mediated vascular dysfunction during acute lung injury. Arch. Physiol. Biochem. 2012; 118 (2): 72–82. DOI: 10.3109/13813455.2012.665463.
18. Marshall B.E., Marshall C., Benumof J., Saidman L.J. Hypoxic pulmonary vasoconstriction in dogs: effects of lung segment size and oxygen tension. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981; 51 (6): 1543–1551. DOI: 10.1152/jappl.1981.51.6.1543.
19. Tenling A., Hachenberg T., Tydén H. et al. Atelectasis and gas exchange after cardiac surgery. Anesthesiology. 1998; 89 (2): 371–378. DOI: 10.1097/00000542-199808000-00013.
20. Jurmann M.J., Dammenhayn L., Schaefers H.J., Haverich A. Pulmonary reperfusion injury: evidence for oxygen-derived free radical mediated damage and effects of different free radical scavengers. Eur. J. Cardiothorac. Surg. 1990; 4 (12): 665–670. DOI: 10.1016/1010-7940(90)90059-9.
21. Sievers H.H., Freund-Kaas C., Eleftheriadis S. et al. Lung protection during total cardiopulmonary bypass by isolated lung perfusion: preliminary results of a novel perfusion strategy. Ann. Thorac. Surg. 2002; 74 (4): 1167–1172. DOI: 10.1016/s0003-4975(02)03853-5.
22. Löckinger A., Schütte H., Walmrath D. et al. Protection against gas exchange abnormalities by pre-aerosolized PGE1, iloprost and nitroprusside in lung ischemia-reperfusion. Transplantation. 2001; 71 (2): 185–193. DOI: 10.1097/00007890-200101270-00003.
23. Vlastos D., Zeinah M., Ninkovic-Hall G. et al. The effects of ischaemic conditioning on lung ischaemia-reperfusion injury. Respir. Res. 2022; 23 (1): 351. DOI: 10.1186/s12931-022-02288-z.
24. Andrabi S.M., Sharma N.S., Karan A. et al. Nitric oxide: physiological functions, delivery, and biomedical applications. Adv. Sci. (Weinh.). 2023; 10 (30): e2303259. DOI: 10.1002/advs.202303259.
25. Martel J., Ko Y.F., Young J.D., Ojcius D.M. Could nasal nitric oxide help to mitigate the severity of COVID-19? Microbes Infect. 2020; 22 (4-5): 168–171. DOI: 10.1016/j.micinf.2020.05.002.
26. Van Dervort A.L., Yan L., Madara P.J. et al. Nitric oxide regulates endotoxin-induced TNF-alpha production by human neutrophils. J. Immunol. 1994; 152 (8): 4102–4109. DOI: 10.4049/jimmunol.152.8.4102.
27. Chello M., Mastroroberto P., Perticone F. et al. Nitric oxide modulation of neutrophil-endothelium interaction: difference between arterial and venous coronary bypass grafts. J. Am. Coll. Cardiol. 1998; 31 (4): 823–826. DOI: 10.1016/s0735-1097(97)00560-3.
28. Kamenshchikov N.O., Duong N., Berra L. Nitric oxide in cardiac surgery: a review article. Biomedicines. 2023; 11 (4): 1085. DOI: 10.3390/biomedicines11041085.
29. Kaminsky D.A. What does airway resistance tell us about lung function? Respir. Care. 2012; 57 (1): 85–99. DOI: 10.4187/respcare.01411.
30. Nova Z., Skovierova H., Calkovska A. Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury. Int. J. Mol. Sci. 2019; 20 (4): 831. DOI: 10.3390/ijms20040831.
31. Papazian L., Aubron C., Brochard L. et al. Formal guidelines: management of acute respiratory distress syndrome. Ann. Intensive Care. 2019; 9 (1): 69. DOI: 10.1186/s13613-019-0540-9.
32. Scaramuzzo G., Ottaviani I., Volta C.A., Spadaro S. Mechanical ventilation and COPD: from pathophysiology to ventilatory management. Minerva Med. 2022; 113 (3): 460–470. DOI: 10.23736/S0026-4806.22.07974-5.
Supplementary files
Review
For citations:
Kravchenko I.V., Gereng E.A., Podoksenov Yu.K., Tyo M.A., Serebryakova O.N., Byankina M.A., Gorokhova A.V., Kozlov B.N., Milto I.V., Kamenshchikov N.O. Effect of nitric oxide supply on the morphofunctional state of the lungs during cardiopulmonary bypass modelling: an experimental study. PULMONOLOGIYA. 2024;34(3):385-394. (In Russ.) https://doi.org/10.18093/0869-0189-2024-34-3-385-394