Preview

PULMONOLOGIYA

Advanced search

Modern engineering solutions for an original domestic nitric oxide generator (“Tianox”)

https://doi.org/10.18093/0869-0189-2024-34-3-409-416

Abstract

Nitric oxide (NO) is a biologically active molecule approved for the treatment of persistent pulmonary hypertension in newborns in the USA, Japan, and most European countries in 1999 – 2008. Inhaled NO is currently used to treat a spectrum of cardiopulmonary disorders, including pulmonary hypertension in children and adults. A commercially available NO delivery system uses pressurized cylinders as a source of NO. Current cylinder-based delivery systems are widely used around the world, but they are bulky, expensive and dependent on a reliable supply chain. The aim of the work was to present an original domestic generator for NO inhalation therapy. Over the past few years, to overcome the limitations of the balloon technology, specialists from the Federal State Unitary Enterprise “Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics” have developed a plasma-chemical NO generator that produces NO from ambient air using a nonequilibrium spark discharge plasma. In this case, a diffuse discharge mode is implemented, which ensures the most efficient synthesis of NO with the participation of excited nitrogen molecules (N2+) according to a chain mechanism similar to the Zeldovich – Semenov chain reaction. The result is a high-quality NO-containing gas mixture that does not contain toxic by-products (electrode material, ozone, etc.) usually formed in the known systems of this type. Conclusion. Based on the developed generator, the Federal State Unitary Enterprise “Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics” designed and created the world’s first commercially available device for inhalation therapy, Tianox. The device was approved for circulation on the territory of the Russian Federation by order of the Federal Service for Surveillance in Healthcare (2020) based on the results of technical and clinical tests. Serial production of Tianox meets the requirements of ISO 13485-2016 and GOST ISO 13485-2017.

About the Authors

V. D. Selemir
Federal State Unitary Enterprise “Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics”
Russian Federation

Victor D. Selemir, Doctor of Physics and Mathematics, Corresponding Member of Russian Academy of Sciences

pr. Mira 37, Nizhegorodskaya obl., Sarov, 607188

tel.: (831) 302-81-84


Competing Interests:

Конфликт интересов авторами не заявлен



S. N. Buranov
Federal State Unitary Enterprise “Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics”
Russian Federation

Sergey N. Buranov, Chief Specialist in Gas-Discharge Technologies, Medical Equipment, Research and Production Center of Physics in the Electrophysical Direction

pr. Mira 37, Nizhegorodskaya obl., Sarov, 607188

tel.: (831) 302-73-22


Competing Interests:

Конфликт интересов авторами не заявлен



A. S. Shirshin
Federal State Unitary Enterprise “Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics”
Russian Federation

Alexander S. Shirshin, Candidate in Technical, Head of the Research Department, Research and Production Center of Physics in the Electrophysical Direction

pr. Mira 37, Nizhegorodskaya obl., Sarov, 607188

tel.: (831) 302-74-86


Competing Interests:

Конфликт интересов авторами не заявлен



References

1. Vanin A.F. Dinitrosyl iron complexes as a “working form of nitric oxide in living organisms”. Cambridge: Cambridge School Publishing, 2019.

2. Ostwald W. (1907) Process of manufacturing nitric. US Patent N858904

3. Ren H, Wu J, Xi C et al. Electrochemically modulated nitric oxide (NO) releasing biomedical devices via copper (II) – Tri (2-pyridylmethyl) amine mediated reduction of nitrite. ACS Appl Mater Interfaces. 2014, 6: 3779-3783. DOI:10.1021/am406066a

4. Patent US5094815A Photolytic interface for HPLC-chemiluminescence detection of nonvolatile N-nitroso compounds. Published: May 10, 1992.

5. Patent US3973910A Method of measuring the N-nitrosoamine content of a sample. Published: Aug. 10, 1976.

6. Patent US3996002A Method and apparatus for measuring the n-nitroso compound content of a sample. Published: Dec. 7, 1976.

7. Patent US3996003A Specific compound detection system with liquid chromatograph. Published: Dec. 7, 1976

8. Patent US3996008A Specific compound detection system with gas chromatograph. Published: Dec. 7, 1976.

9. Patent US6758214B2 Simple nitric oxide generator for ambulatory and/or bedside inhaled no treatment. Published: July 6, 2004.

10. Patent US2016136376A1 Method and apparatus for generating nitric oxide for medical use. Published: May 19, 2016.

11. Patent EP1903003A1 Apparatus and method for photolytic production of nitric oxide. Published: March 26, 2008.

12. Patent CN103269973A Method and arrangement for generating nitric oxide. Published: Aug. 28, 2013.

13. Eyde HS. The manufacture of nitrates from the atmosphere by the electric arc - Birkeland-Eyde process. JR Soc Arts. 1909, 57(2949): 568-576.

14. Zeldovich YB. The oxidation of nitrogen in combustion and explosions. Acta Physicochim URSS. 1946, 21(4): 577-628. DOI: 10.1515/9781400862979.364

15. Зельдович Я.Б., Садовников П.Я., Франк-Каменецкий. Окисление азота при горении. М.; Л.: Издательство АН СССР, 1947.

16. Кинетика и термодинамика образования окислов азота в плазменной струе. В кн: Кинетика и термодинамика химических реакций в низкотемпературной плазме. Под ред. Л.С. Полака. М.: Наука, 1965.

17. Patent RU2183474 (C1)

18. Буранов С.Н., Горохов В.В., Карелин В.И., Селемир В.Д., Ширшин А.С. Импульсно-периодический диффузный разряд с автоионизацией в потоке газа. Журнал технической физики. 2020, 90(5): 755-759. DOI: 10.21883/JTF.2020.05.49175.220-19

19. Елецкий А.В., Палкина Л.А., Смирнов Б.М. Явления переноса в слабоионизованной плазме. М.: Атомиздат, 1975.

20. Химия плазмы. Под ред. Б.М. Смирнова. М.: Атомиздат, 1978.

21. Буранов С.Н., Карелин В.И., Селемир В.Д., А.С. Ширшин. Аппарат для ингаляционной NO-терапии. Приборы и техника эксперимента. 2019. 5: 158-159. DOI: 10.1134/S0032816219040037.

22. Чыонг Т.Т., Шогенова Л.В., Селемир В.Д., Чучалин А.Г. Эффекты ингаляционного оксида азота у пациентов с хронической обструктивной болезнью легких с гиперкапнической дыхательной недостаточностью и легочной гипертензией. Пульмонология. 2022, 32(2): 216-225. DOI: 10.18093/0869-0189-2022-32-2-216-225.

23. Буранов С.Н., Карелин В.И., Селемир В.Д., Ширшин А.С., Пичугин В.В., Домнин С.Е. Аппарат ингаляционной терапии оксидом азота «ТИАНОКС» и первый опыт его клинического применения в кардиохирургии. В кн.: Материалы научно-образовательной конференции «Актуальные вопросы и инновационные технологии в анестезиологии и реаниматологии». СПб.; 2018: 4-9.

24. Баутин А.Е., Селемир В.Д., Маричев А.О. и др. Ингаляционный NO в медицине: перспективные направления клинического применения и технической реализации методики. В кн.: Трансляционная медицина. Под ред. академика РАН Е.В. Шляхто. СПб.: Санкт-Петербург, 2020.


Supplementary files

Review

For citations:


Selemir V.D., Buranov S.N., Shirshin A.S. Modern engineering solutions for an original domestic nitric oxide generator (“Tianox”). PULMONOLOGIYA. 2024;34(3):409-416. (In Russ.) https://doi.org/10.18093/0869-0189-2024-34-3-409-416

Views: 445


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)