Spirometry: national guidelines for the testing and interpretation of results Interregional Public Organization “Russian Respiratory Society” All-Russian Public Organization “Russian Association of Specialists in Functional Diagnostics” All-Russian Public Organization “Russian Scientific Medical Society of Therapists”














https://doi.org/10.18093/08690189-2023-33-3-307-340
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Full Text:
Abstract
Spirometry is the most common method to assess respiratory function. It is widely used to obtain objective information for the diagnosis of respiratory diseases and monitoring the functional state of the respiratory system. In 2014, the Russian Respiratory Society approved the technical standards for performing spirometry. Improvements in measuring devices have necessitated updating technical standards and standardizing the result interpretation algorithm.
Methods. This document on spirometry was prepared by a joint group of experts from the Russian Respiratory Society and the Russian Association of Specialists in Functional Diagnostics, who have experience in performing spirometry in accordance with quality criteria, analyzing the results of the study, and developing national standards.
Results. The 2014 Spirometry Technical Standards were revised, including the addition of quality criteria for measurements and test quality assessment. Where necessary, evidence was provided to support the change. The experience and knowledge of the expert group members were used to develop these recommendations.
Conclusion. Standards for spirometry and bronchodilator test and the result interpretation algorithm are presented to improve the measurement quality and consistency of data interpretation.
Keywords
About the Authors
M. Yu. KamenevaRussian Federation
Ul. L`va Tolstogo 6 – 8, Saint-Petersburg, 197022
Competing Interests:
The authors report that there is no conflict of interest
A. V. Cherniak
Russian Federation
Orekhovyy bul’var 28, Moscow, 115682; Ul. Odinnadtsataya Parkovaya 32, Moscow, 105077
Competing Interests:
The authors report that there is no conflict of interest
Z. R. Aisanov
Russian Federation
Ul. Ostrovityanova 1, Moscow, 117997
Competing Interests:
The authors report that there is no conflict of interest
S. N. Avdeev
Russian Federation
Orekhovyy bul’var 28, Moscow, 115682; Ul. Trubetskaya 8, build. 2, Moscow, 119991
Competing Interests:
The authors report that there is no conflict of interest
S. L. Babak
Russian Federation
Ul. Delegatskaya 20/1, Moscow, 127473
Competing Interests:
The authors report that there is no conflict of interest
А. S. Belevskiy
Russian Federation
Ul. Ostrovityanova 1, Moscow, 117997
Competing Interests:
The authors report that there is no conflict of interest
N. F. Beresten
Russian Federation
Ul. Barrikadnaya 2/1, Moscow, 123995; ul. Shchepkina 61/2, Moscow, 129110
Competing Interests:
The authors report that there is no conflict of interest
Е. N. Kalmanova
Russian Federation
Ul. Odinnadtsataya Parkovaya 32, Moscow, 105077
Competing Interests:
The authors report that there is no conflict of interest
A. G. Malyavin
Russian Federation
Ul. Delegatskaya 20/1, Moscow, 127473
Competing Interests:
The authors report that there is no conflict of interest
J. M. Perelman
Russian Federation
Ul. Kalinina 22, Blagoveshchensk, 675000
Competing Interests:
The authors report that there is no conflict of interest
A. G. Prikhodko
Russian Federation
Ul. Kalinina 22, Blagoveshchensk, 675000
Competing Interests:
The authors report that there is no conflict of interest
P. V. Struchkov
Russian Federation
Orekhovyy bul’var 28, Moscow, 115682; ul. Moskvorech’e 16, build. 9, Moscow, 115522
Competing Interests:
The authors report that there is no conflict of interest
S. Yu. Chikina
Russian Federation
Ul. Trubetskaya 8, build. 2, Moscow, 119991
Competing Interests:
The authors report that there is no conflict of interest
M. I. Chushkin
Russian Federation
Yauzskaya alleya 2, Moscow, 107564
Competing Interests:
The authors report that there is no conflict of interest
References
1. GOST R ISO 13731-2016. [Ergonomics of the thermal environment. Terms, definitions and designations]. Input. November 26, 2016. Moscow: Standartinform; 2016. Available at: https://protect.gost.ru/document.aspx?control=7&id=205386 (in Russian).
2. GOST R ISO 26782-2016. [Spirometers designed to measure the parameters of a person’s forced exhalation]. Input. July 20, 2016. Moscow: Standartinform; 2016. Available at: https://docs.cntd.ru/document/1200137304/titles (in Russian).
3. Graham B.L., Steenbruggen I., Miller M.R. et al. Standardization of spirometry 2019. Update an official American Thoracic Society and European Respiratory Society technical statement. Am. J. Respir. Crit. Care Med. 2019; 200 (8): e70-88. https://doi.org/10.1164/rccm.201908-1590ST.
4. Gauld L.M., Kappers J., Carlin J.B., Robertson C.F. Height prediction from ulna length. Dev. Med. Child. Neurol. 2004; 46 (7): 475-480. https://doi.org/10.1017/s0012162204000787.
5. Quanjer P.H., Capderou A., Mazicioglu M.M. et al. All-age relationship between arm span and height in different ethnic groups. Eur. Respir. J. 2014; 44 (4): 905-912. https://doi.org/10.1183/09031936.00054014.
6. Gagnon P., Guenette J., Langer D. et al. Pathogenesis of hyperinflation in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2014; 9 (1): 187-201. https://doi.org/10.2147/COPD.S38934.
7. Aisanov Z.R., Kalmanova E.N. [Bronchial obstruction and lung hyperinflation in chronic obstructive pulmonary disease]. Prakticheskaya pul’monologiya. 2016; (2): 9-17. Available at: https://atmosphere-ph.ru/modules/Magazines/articles/pulmo/pp_2_2016_9.pdf (in Russian).
8. Wanger J.S., Ikle D.N., Cherniack R.M. The effect of inspiratory maneuvers on expiratory flow rates in health and asthma: influence of lung elastic recoil. Am. J. Respir. Crit. Care Med. 1996; 153 (4, Pt 1): 1302-1308. https://doi.org/10.1164/ajrccm.153.4.8616558.
9. D’Angelo E., Prandi E., Milic-Emili J. Dependence of maximal flow-volume curves on time course of preceding inspiration. J. Appl. Physiol. 1993; 75 (3): 1155-1159. https://doi.org/10.1152/jappl.1993.75.3.1155.
10. Hankinson J.L., Crapo O.R. Standard flow-time waveforms for testing of PEF meters. Am. J. Respir. Crit. Care Med. 1995; 152 (2): 696-701. https://doi.org/10.1164/ajrccm.152.2.7633728.
11. Miller M.R., Pedersen O.F., Quanjer P.H. The rise and dwell time for peak expiratory flow in patients with and without airflow limitation. Am. J. Respir. Crit. Care Med. 1998: 158 (1): 23-27. https://doi.org/10.1164/ajrccm.158.1.9708128.
12. Enright P.L., Beck K.C., Sherrill D.L. Repeatability of spirometry in 18,000 adult patients. Am. J. Respir. Crit. Care Med. 2004; 169 (2): 235-238. https://doi.org/10.1164/rccm.200204-347OC.
13. Enright P., Vollmer W.M., Lamprecht B. et al. Quality of spirometry tests performed by 9893 adults in 14 countries: the BOLD Study. Respir. Med. 2011; 105 (10): 1507-1515. https://doi.org/10.1016/j.rmed.2011.04.008.
14. Enright P.L, Lebowitz M.D, Cockroft D.W. Physiologic measures: pulmonary function tests: asthma outcome. Am. J. Respir. Crit. Care Med. 1994; 149 (2, Pt 2): S9-18. https://doi.org/10.1164/ajrccm/149.2_Pt_2.S9.
15. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for Prevention, Diagnosis and Management of COPD. 2023 Report. Available at: https://goldcopd.org/wp-content/uploads/2023/03/GOLD-2023-ver-1.3-17Feb2023_WMV.pdf
16. Crenesse D., Berlioz M., Bourrier T., Albertini M. Spirometry in children aged 3 to 5 years: reliability of forced expiratory maneuvers. Pediatr. Pulmonol. 2001; 32 (1): 56-61. https://doi.org/10.1002/ppul.1089.
17. Piccioni P., Borraccino A., Forneris M.P. et al. Reference values of forced expiratory volumes and pulmonary flows in 3-6 year children: a cross-sectional study. Respir. Res. 2007; 8 (1): 14. https://doi.org/10.1186/1465-9921-8-14.
18. Quanjer P.H., Tammeling G.J., Cotes J.E. et al. Lung volumes and forced ventilatory flows. Report working party standardization of lung function tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur. Respir. J. Suppl. 1993; 6 (Suppl. 16): 5-40. https://doi.org/10.1183/09041950.005s1693.
19. Klement R.F., Lavrushin A.A., Kotegov Yu.M. et al. [Instructions for the use of formulas and tables of due values of the main spirographic indicators]. Leningrad; 1986 (in Russian).
20. Klement R.F., Zilber N.A. Methodological features of parameters of the “flow-volume” curve in infants. Pul’monologiya. 1994; (2): 17-21 Available at: https://journal.pulmonology.ru/pulm/article/view/3578/2946 (in Russian).
21. Kameneva M.Ju., Tishkov A.V., Byhova A.V. [Consistency analysis of some reference systems in the interpretation of spirometry]. 2012; 16 (2): 23-28. https://doi.org/10.17816/RFD2012223-28 (in Russian).
22. Quanjer P.H., Stanojevic S., Cole T.J. et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur. Respir. J. 2012; 40 (6): 1324-1343. https://doi.org/10.1183/09031936.00080312.
23. Struchkov P.V., Kirjuhina L.D., Drozdov D.V. [Different predicted values - different conclusions?]. Meditsinskiy alfavit. 2021; (15): 22-26. https://doi.org/10.33667/2078-5631-2021-15-22-26.
24. Hansen J.E. Lower limit of normal is better than 70% or 80%. Chest. 2011; 139 (1): 6-8. https://doi.org/10.1378/chest.10-1117.
25. Miller M.R., Quanjer P.H., Swanne M.P. et al. Interpreting lung function data using 80% predicted and fixed thresholds misclassifies more than 20% of patients. Chest. 2011; 139 (1): 52-59. https://doi.org/10.1378/chest.10-0189.
26. Pellegrino R., Viegi G., Brusasco V. et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005; 26 (5): 948-968. https://doi.org/10.1183/09031936.05.00035205.
27. Stanojevic S., Kaminsky D.A., Miller M.R. et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022; 60 (1): 2101499. https://doi.org/10.1183/13993003.01499-2021.
28. Chuchalin A.G., Aisanov Z.R., Chikina S.Yu. et al. [Federal guidelines of Russian Respiratory Society on spirometry]. Pul’monologiya. 2014; (6): 11-24. https://doi.org/10.18093/0869-0189-2014-0-6-11-24 (in Russian).
29. Miller R.D., Hyatt R.E. Evaluation of obstructing lesions of the trachea and larynx by flow-volume loops. Am. Rev. Respir. Dis. 1973; 108 (3): 475-481. https://doi.org/10.1164/arrd.1973.108.3.475.
30. Nafisa S., Messer B., Downie B. et al. A retrospective cohort study of idiopathic diaphragmatic palsy: a diagnostic triad, natural history and prognosis. ERJ Open Res. 2021; 7 (3): 00953-2020. https://doi.org/10.1183/23120541.00953-2020.
31. Quanjer P.H., Ruppel G.L., Langhammer A. et al. Bronchodilator response in FVC is larger and more relevant than in FEV1 in severe airflow obstruction. Chest. 2017; 151 (5): 1088-1098. https://doi.org/10.1016/j.chest.2016.12.017.
32. Vilozni D., Hakim F., Livnat G. et al. Assessment of airway bronchodilation by spirometry compared to airway obstruction in young children with asthma. Can. Respir. J. 2016; 2016: 5394876. https://doi.org/10.1155/2016/5394876.
33. Tan W.C., Vollmer W.M., Lamprecht B. et al. Worldwide patterns of bronchodilator responsiveness: results from the Burden of Obstructive Lung Disease study. Thorax. 2012; 67 (8): 718-726. https://doi.org/10.1136/thoraxjnl-2011-201445.
34. Cerveri I., Pellegrino R., Dore R. et al. Mechanisms for isolated volume response to a bronchodilator in patients with COPD. J. Appl. Physiol. (1985). 2000; 88 (6): 1989-1995. https://doi.org/10.1152/jappl.2000.88.6.1989.
35. Levy M.L., Quanjer P.H., Booker R. et al. Diagnostic spirometry in primary care: Proposed standards for general practice compliant with American Thoracic Society and European Respiratory Society recommendations. Prim. Care Resp. J. 2009; 18 (3): 130-147. https://doi.org/10.4104/pcrj.2009.00054.
36. Borrego L.M., Stocks J., Almeida I. et al. Bronchodilator responsiveness using spirometry in healthy and asthmatic preschool children. Arch. Dis. Child. 2013; 98 (2): 112-117. https://doi.org/10.1136/archdischild-2012-301819.
37. Burity E.F., Pereira C.A., Jones M.H. et al. Bronchodilator response cut-off points and FEV 0.75 reference values for spirometry in preschoolers. J. Bras. Pneumol. 2016; 2 (5): 326-332. https://doi.org/10.1590/S1806-37562015000000216.
38. Aisanov Z.R., Chernyak A.V., eds. [Functional diagnostics in pulmonology: A practical guide]. Moscow: ATMO; 2016 (in Russian).
Review
For citations:
Kameneva M.Yu., Cherniak A.V., Aisanov Z.R., Avdeev S.N., Babak S.L., Belevskiy А.S., Beresten N.F., Kalmanova Е.N., Malyavin A.G., Perelman J.M., Prikhodko A.G., Struchkov P.V., Chikina S.Yu., Chushkin M.I. Spirometry: national guidelines for the testing and interpretation of results Interregional Public Organization “Russian Respiratory Society” All-Russian Public Organization “Russian Association of Specialists in Functional Diagnostics” All-Russian Public Organization “Russian Scientific Medical Society of Therapists”. PULMONOLOGIYA. 2023;33(3):307-340. (In Russ.) https://doi.org/10.18093/08690189-2023-33-3-307-340
ISSN 2541-9617 (Online)