1. Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 2020; 8 (6): 585-596. https://doi.org/10.1016/S2213-2600(20)30105-3.
2. Brode S.K., Ling S.C., Chapman K.R. Alpha-1 antitrypsin defi-ciency: a commonly overlooked cause of lung disease. CMAJ. 2012; 184 (12): 1365-1371. https://doi.org/10.1503/cmaj.111749.
3. de Serres F., Blanco I. Role of alpha-1 antitrypsin in human health and disease. J. Intern. Med. 2014; 276 (4): 311-335. https://doi.org/10.1111/joim.12239.
4. Чучалин А.Г. Эмфизема. Пульмонология. 1998; (1): 6-13. Доступно на: https://journal.pulmonology.ru/pulm/article/view/3206/2602
5. Cantin A.M. Cystic fibrosis transmembrane conductance regulator. Implications in cystic fibrosis and chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 2016; 13 (Suppl. 2): S150-155. https://doi.org/10.1513/AnnalsATS.201509-588KV.
6. Thorgeirsson T.E., Gudbjartsson D.F., Surakka I. et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat. Genet. 2010; 42 (5): 448-453. https://doi.org/10.1038/ng.573.
7. Fowler C.D., Lu Q., Johnson P.M. et al. Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature. 2011; 471 (7340): 597-601. https://doi.org/10.1038/nature09797.
8. Castaldi P.J., Cho M.H., Zhou X. et al. Genetic control of gene expression at novel and established chronic obstructive pulmonary disease loci. Hum. Mol. Genet. 2015; 24 (4):1200-1210. https://doi.org/10.1093/hmg/ddu525.
9. Tobin M. Common and rare genetic variants in respiratory health: the UK Biobank Lung Exome Variant Evaluation (UK BiLEVE) consortium. 2012. https://www.ukbiobank.ac.uk/enable-your-research/approved-research/common-and-rare-genetic-variants-in-respiratory-health-the-uk-biobank-lung-exome-variant-evaluation-uk-bileve-consortium
10. Stylianou P., Clark K., Gooptu B. et al. Tensin1 expression and function in chronic obstructive pulmonary disease. Nature. 2019; 9 (1): 18942. https://doi.org/10.1038/s41598-019-55405-2.
11. Sandford A.J., Chagani T., Weir T.D. et al. Susceptibility genes for rapid decline of lung function in the lung health study. Am. J. Respir. Crit. Care Med. 2001; 163 (2): 469-473. https://doi.org/10.1164/ajrccm.163.2.2006158.
12. Pare P.D. The smoking gun: Genetics and genomics reveal causal pathways for COPD. Canadian J. Respir. Crit. Care Sleep Med. 2017; 1 (3): 126-132. https://doi.org/10.1080/24745332.2017.1361203.
13. Chen Q., de Vries M., Nwozor K.O. et al. A protective role of FAM13A in human airway epithelial cells upon exposure to cigarette smoke extract. Front. Physiol. 2021; 12: 690936. https://doi.org/10.3389/fphys.2021.690936.
14. Churg A., Zhou S., Wright J.L. Matrix metalloproteinases in COPD. Eur. Respir. J. 2012; 39 (1): 197-209. https://doi.org/10.1183/09031936.00121611.
15. Qiu S.L., Duan M.C., Liang Y. et al. Cigarette smoke Induction of Interleukin-27/WSX-1 regulates the differentiation of Th1 and Th17 cells in a smoking mouse model of emphysema. Front. Immunol. 2016; 7: 553. https://doi.org/10.3389/fimmu.2016.00553.
16. Sharma A., Kaur S., Sarkar M. et al. The AGE-RAGE axis and RAGE genetics in chronic obstructive pulmonary disease. Clin. Rev. Allergy Immunol. 2021; 60 (2): 244-258. https://doi.org/10.1007/s12016-020-08815-4.
17. Angata T., Ishii T., Motegi T. et al. Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell. Mol. Life Sci. 2013; 70 (17): 3199-3210. https://doi.org/10.1007/s00018-013-1311-7.
18. Yoo S., Takikawa S., Geraghty P. et al. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD. PLoS Genet. 2015; 11 (1): e1004898. https://doi.org/10.1371/journal.pgen.1004898.
19. Brehm J.M., Hagiwara K., Tesfaigzi Y. et al. Identification of FGF7 as a novel susceptibility locus for chronic obstructive pulmonary disease. Thorax. 2011; 66 (12): 1085-1090. https://doi.org/10.1136/thoraxjnl-2011-200017.
20. Brandsma C.A., van den Berge M., Postma D.S. et al. A large lung gene expression study identifying fibulin-5 as a novel player in tissue repair in COPD. Thorax. 2015; 70 (1): 21-32. https://doi.org/10.1136/thoraxjnl-2014-205091.