Primary ciliary dyskinesia: review of the draft clinical guidelines, 2022
https://doi.org/10.18093/0869-0189-2022-32-4-517-538
Abstract
Primary ciliary dyskinesia (PCD) is a rare hereditary disease from the group of ciliopathies, which is based on a defect in the cilia ultrastructure of the respiratory epithelium and similar structures (sperm flagella, villi of the fallopian tubes, ventricular ependyma, etc.), leading to motor function impairment. The prevalence of the disease varies significantly around the world and is not known reliably in the Russian Federation.
The aim of the review was to analyze literature data on modern approaches to the diagnosis and treatment of PCD.
Methodology. The data of 90 articles and the opinions of experts providing care to patients with PCD were used.
Results. The classic manifestations of PCD depend on age. The leading manifestations of the disease in patients with PCD are recurrent inflammatory diseases of the upper and lower respiratory tract (bronchitis, pneumonia), with the formation of bronchiectasis, damage to the ENT organs (chronic rhinitis, rhinosinusitis, nasal polyposis, repeated otitis media, progressive hearing loss). Currently, there is no single method which could serve as a “gold” standard for diagnosing PCD. The diagnosis of PCD is based on the characteristic clinical picture in combination with the results of special tests (nitric oxide in exhaled air, DNA diagnostics, high-speed video microscopy, transmission electron microscopy). The genetic diagnostics has not been developed sufficiently in the global practice yet and is unavailable in our country. The approach to the treatment of a patient with PCD should be multidisciplinary due to multiple organ lesions. According to the European consensus, the goal of PCD therapy is to restore or maintain normal lung function. There have been no randomized trials of treatment for PCD, and therefore all treatment recommendations are based on very low-level evidence or extrapolated from cystic fibrosis guidelines. Recommendations on mucolytic, antibacterial and anti-inflammatory therapy of PCD are given with consideration for the international and domestic experience.
Conclusion. The development of a new version of clinical guidelines containing up-to-date relevant information will improve the diagnosis and treatment of PCD in the Russian Federation.
About the Authors
E. I. KondratyevaRussian Federation
Elena I. Kondratyeva, Doctor of Medicine, Professor, Head of the Scientific and Clinical Department of Cystic Fibrosis, Head of the Department of Genetics of Respiratory System Diseases, Institute of Higher and Additional Professional Education, Federal State Budgetary Scientific Institution “Academician N. P. Bochkov Medical Genetic Research Center”; Head of the Cystic Fibrosis Center, State budgetary healthcare institution Moscow region “Research Clinical Institute of Childhood”, Ministry of Health of the Moscow Region
ul. Moskvorech’e 1, Moscow, 1115478
ul. Bolshaya Serpukhovskaya 62, Moscow, 115093
tel.: (495) 111-03-03
Competing Interests:
The authors declared no conflict of interest.
S. N. Avdeev
Russian Federation
Sergey N. Avdeev, Doctor of Medicine, Professor, Academician of Russian Academy of Sciences, Head of the Department of Pulmonology, N.V.Sklifosovsky Institute of Clinical Medicine, Federal State Autonomous Educational Institution of Higher Education I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Leading Researcher, Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
SPIN-code: 1645-5524; Author ID: 194984
ul. Trubetskaya 8, build. 2, Moscow, 119991
28 Orehovyy bul’var, Moscow, 115682
tel.: (495) 708-35-76
Competing Interests:
The authors declared no conflict of interest.
Yu. L. Mizernitskiy
Russian Federation
Yuri L. Mizernitskiy, Doctor of Medicine, Professor, Head of the Department of Chronic Inflammatory and Allergic Lung Diseases
ul. Taldomskaya 2, Moscow, 125412
tel.: (499) 488-44-73
Competing Interests:
The authors declared no conflict of interest.
A. V. Polyakov
Russian Federation
Alexander V. Polyakov, Doctor of Biology, Professor, Corresponding Member of the Russian Academy of Sciences, Head of the DNA Diagnostics Laboratory
ul. Moskvorech’e 1, Moscow, 1115478
tel.: (499) 612-98-46
Competing Interests:
The authors declared no conflict of interest.
M. Yu. Chernukha
Russian Federation
Marina Y. Chernukha, Doctor of Medicine, Head of the Laboratory of Molecular Epidemiology of Nosocomial Infections
ul. Gamaleya 18, Moscow, 123098
tel.: (499) 193-55-94
Competing Interests:
The authors declared no conflict of interest.
O. V. Kondratenko
Russian Federation
Olga V. Kondratenko, Doctor of Medicine, Associate Professor, Department of General and Clinical Microbiology, Immunology and Allergology, bacteriologist
ul. Chapaevskaya 89, Samara, 443099
tel.: (846) 374-91-00
Competing Interests:
The authors declared no conflict of interest.
L. S. Namazova-Baranova
Russian Federation
Leyla S. Namazova-Baranova, Doctor of Medicine, Professor, Academician of the Russian Academy of Sciences, President of the Union of Pediatricians of Russia; Head of Faculty Pediatrics Department, Pediatric Faculty, Pirogov Russian National Research Medical University (Pirogov Medical University), Ministry of Health of the Russian Federation; Head of Pediatrics and Child Health Research Institute of the “Central Clinical Hospital of the Russian Academy of Sciences”, Ministry of Education and Science of Russia; Chief Pediatric Specialist in Preventive Medicine, Healthcare Ministry of Russia; Vice-President of the Global Pediatric Pulmonological Alliance
Litovskiy bulv. 1A, Moscow, 117593
ul. Ostrovityanova 1, Moscow, 117997
tel.: (499) 400-47-33
Competing Interests:
The authors declared no conflict of interest.
E. A. Vishneva
Russian Federation
Elena A. Vishneva, Doctor of Medicine, Deputy Director for Science, Pediatrics and Child Health Research Institute of the “Central Clinical Hospital of the Russian Academy of Sciences”, Ministry of Education and Science of Russia; Professor, Faculty Pediatrics Department, Pediatric Faculty, Pirogov Russian National Research Medical University (Pirogov Medical University), Ministry of Health of the Russian Federation
SPIN: 1109-2810
Litovskiy bulv. 1A, Moscow, 117593
ul. Ostrovityanova 1, Moscow, 117997
tel.: (499) 137-01-97
Competing Interests:
The authors declared no conflict of interest.
L. R. Selimzyanova
Russian Federation
Liliya R. Selimzyanova, Candidate of Medicine, Associate Professor, Department of Pediatrics and Pediatric Rheumatology, Clinical Institute of Children’s Health named after N.F.Filatov, Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Leading Researcher, Pediatrics and Child Health Research Institute of the “Central Clinical Hospital of the Russian Academy of Sciences”, Ministry of Education and Science of Russia; Associate Professor, Department of Faculty Pediatrics, Pediatric Faculty, Pirogov Russian National Research Medical University (Pirogov Medical University), Ministry of Health of the Russian Federation
SPIN: 5508-1689
ul. Trubetskaya 8, build. 2, Moscow, 119991
Litovskiy bulv. 1A, Moscow, 117593
ul. Ostrovityanova 1, Moscow, 117997
tel.: (499) 400-47-33
Competing Interests:
The authors declared no conflict of interest.
O. I. Simonova
Russian Federation
Olga I. Simonova, Doctor of Medicine, Pediatrician, Professor, Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Head of the Pulmonology Department, Federal State Autonomous Institution “National Medical Research Center for Children’s Health”, Ministry of Health of the Russian Federation
ul. Trubetskaya 8, build. 2, Moscow, 119991
Lomonosovsky prosp. 2, build. 1, 119296, Moscow
tel.: (495) 967-14-20
Competing Interests:
The authors declared no conflict of interest.
T. E. Gembitskaya
Russian Federation
Tatyana E. Gembitskaya, Doctor of Medicine, Professor, Lead of Department of Therapeutic Pulmonology, Scientific Research Institute of Pulmonology
ul. L`va Tolstogo 6–8, Saint-Petersburg, 197022
tel.: (812) 338-66-25
Competing Interests:
The authors declared no conflict of interest.
E. E. Bragina
Russian Federation
Elizaveta E. Bragina, Doctor of Biology, Leading Researcher, Laboratory of genetics of reproductive disorders, Federal State Budgetary Scientific Institution “Academician N. P. Bochkov Medical Genetic Research Center”, Senior Researcher, Department of Electron Microscopy, The A N. Belozersky Institute оf Physico-Chemical Biology, Federal State Budget Educational Institution of Higher Education M. V. Lomonosov Moscow State University
ul. Moskvorech’e 1, Moscow, 1115478
Leninskye gory, 1, build. 40, Moscow, 119992
tel.: (495) 939-53-59
Competing Interests:
The authors declared no conflict of interest.
S. A. Rachina
Russian Federation
Svetlana A. Rachina, Doctor of Medicine, Professor of the Russian Academy of Sciences, Head of the Department of Hospital Therapy No.2, Federal State Autonomous Educational Institution of Higher Education I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
ul. Trubetskaya 8, build. 2, Moscow, 119991
tel.: (499) 782–30-84
Competing Interests:
The authors declared no conflict of interest.
A. B. Malakhov
Russian Federation
Aleksandr B. Malakhov, Doctor of Medicine, Professor at Department of Pediatric Diseases
ul. Trubetskaya 8, build. 2, Moscow, 119991
tel.: (985) 970-73-11
Competing Interests:
The authors declared no conflict of interest.
D. P. Polyakov
Russian Federation
Dmitry P. Polyakov, Candidate of Medicine, Associate Professor, Department of Otorhinolaryngology, Faculty of Additional Professional Education, Pirogov Russian National Research Medical University (Pirogov Medical University), Ministry of Health of the Russian Federation, Head of the Pediatric Otorhinolaryngology Department, Leading Researcher, Federal State Budgetary Institution “The National Medical Research Center for Otorhinolaryngology of the Federal Medico-Biological Agency of Russia”
ul. Ostrovityanova 1, Moscow, 117997
Volokolamskoe sh. 30, build. 2, Moscow, 123182
tel.: (499) 968-69-12
Competing Interests:
The authors declared no conflict of interest.
N. D. Odinaeva
Russian Federation
Nuriniso D. Odinaeva, Doctor of Medicine, Professor, Director
ul. Bolshaya Serpukhovskaya 62, Moscow, 115093
tel.: (499) 237-02-23
Competing Interests:
The authors declared no conflict of interest.
S. I. Kutsev
Russian Federation
Kutsev Sergey Ivanovich, Doctor of Medicine, Professor, Corresponding Member of the Russian Academy of Sciences, Director, Federal State Budgetary Scientific Institution “Academician N.P.Bochkov Medical Genetic Research Center”, Chief external expert in Medical Genetics of the Ministry of Health of Russia, President, Association of Medical Geneticists
ul. Moskvorech’e 1, Moscow, 1115478
tel.: (499) 612-00-37
Competing Interests:
The authors declared no conflict of interest.
References
1. Novak A.A., Mizernitskiy Yu.L. [Primary ciliary dyskinesia: state of the problem and prospects]. Meditsinskiy sovet. 2021; (1): 276–285. DOI: 10.21518/2079-701X-2021-1-276-285 (in Russian).
2. Bogorad A.E., D’yakova S.E., Mizernitskiy Yu.L. [Primary ciliary dyskinesia: modern approaches to the diagnostics and treatment]. Rossiyskiy vestnik perinatologii i pediatrii. 2019; 64 (5): 123–133. DOI: 10.21508/1027-4065-2019-64-5-123-133 (in Russian).
3. Knowles M.R., Daniels L.A., Davis S.D. et al. Primary ciliary dyskinesia: recent advances in diagnostics, genetics, and characterization of clinical disease. Am. J. Respir. Crit. Care Med. 2013; 188 (8): 913–922. DOI: 10.1164/rccm.201301-0059CI.
4. Kuehni C.E, Lucas J.S. Diagnosis of primary ciliary dyskinesia: summary of the ERS Task Force report. Breathe (Sheff.). 2017; 13 (3): 166–178. DOI: 10.1183/20734735.008517.
5. Zariwala M.A., Knowles M.R., Leigh M.W., Leigh M.W. Primary ciliary dyskinesia. In: Adam M.P., Mirzaa G.M., Pagon R.A. et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1993–2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1122/
6. Lucas J.S.A., Walker W.T., Kuehni C.E., Lazor R. Primary ciliary dyskinesia. In.: Cordier J.F., ed. Orphan Lung Diseases. European Respiratory Society Monographs. 2011; 12: 201–218. DOI: 10.1183/1025448x.erm5410.
7. O’Callaghan C., Chetcuti P., Moya E. High prevalence of primary ciliary dyskinesia in a British Asian population. Arch. Dis. Child. 2010; 95 (1): 51–52. DOI: 10.1136/adc.2009.158493.
8. Kuehni C.E., Frischer T., Strippoli M.P. et al. Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur. Respir. J. 2010; 36 (6): 1248–1258. DOI: 10.1183/09031936.00001010.
9. Coren M.E., Meeks M., Morrison I. et al. Primary ciliary dyskinesia: age at diagnosis and symptom history. Acta Paediatr. 2002; 91 (6): 667–669. DOI: 10.1080/080352502760069089.
10. Kuehni C.E., Goutaki M., Carroll M., Lucas J. Primary ciliary dyskinesia: the patients grow up. Eur. Respir. J. 2016; 48 (2): 297–300. DOI: 10.1183/13993003.01098-2016.
11. Selimzyanova L., Sereda E. Dificulties of primary ciliary dyskinesia diagnosis in children. Eur. Respir. J. 2013, 42 (Suppl. 57): 1236. Available at: https://erj.ersjournals.com/content/42/Suppl_57/P1236
12. Shah A., Shoemark A., MacNeill S.J. et al. A longitudinal study characterising a large adult primary ciliary dyskinesia population. Eur. Respir. J. 2016; 48 (2): 441–450. DOI: 10.1183/13993003.00209-2016.
13. Werner C., Onnebrink J.G., Omran H. Diagnosis and management of primary ciliary dyskinesia. Cilia. 2015; 4 (1): 2. DOI: 10.1186/s13630-014-0011-8.
14. Ibañez-Tallon I., Heintz N., Omran H. To beat or not to beat: roles of cilia in development and disease. Hum. Mol. Genet. 2003; 12 (Suppl. 1): R27–35. DOI: 10.1093/hmg/ddg061.
15. Kurkowiak M., Zietkiewicz E., Witt M. Recent advances in primary ciliary dyskinesia genetics. J. Med. Genet. 2015; 52 (1): 1–9. DOI: 10.1136/jmedgenet-2014-10275.
16. Shoemark A., Dixon M., Corrin B., Dewar A. Twenty-year review of quantitative transmission electron microscopy for the diagnosis of primary ciliary dyskinesia. J. Clin. Pathol. 2012; 65 (3): 267–271. DOI: 10.1136/jclinpath-2011-200415.
17. Osinka A., Poprzeczko M., Zielinska M.M. et al. Ciliary proteins: filling the gaps. Recent advances in deciphering the protein composition of motile ciliary complexes. Cells. 2019; 8 (7): 730. DOI: 10.3390/cells8070730.
18. Bragina E.E., Sorokina T.M., Arifulin E.A., Kurilo L.F. [Genetically determined patozoospermia: literature review and research results]. Andrologiya i genital’naya khirurgiya. 2015; 16 (3): 29–39. DOI: 10.17650/2070-9781-2015-16-3-29-39 (in Russian).
19. Vallet C., Escudier E., Roudot-Thoraval F. et al. Primary ciliary dyskinesia presentation in 60 children according to ciliary ultrastructure. Eur. J. Pediatr. 2013; 172 (8): 1053–1060. DOI: 10.1007/s00431-013-1996-5.
20. Olbrich H., Häffner K., Kispert A. et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left–right asymmetry. Nat. Genet. 2002; 30 (2): 143–144. DOI: 10.1038/ng817.
21. Shoemark A., Pinto A.L., Patel M.P. et al. PCD Detect: enhancing ciliary features through image averaging and classification. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020; 319 (6): L1048–1060. DOI: 10.1152/ajplung.00264.2020.
22. Bragina E.E., Arifulin E.A., Senchenkov E.P. [Genetically regular and functional impairment of human spermatozoa motility]. Ontogenez. 2016; 47 (5): 271–286. DOI: 10.7868/S0475145016050025 (in Russian).
23. Lucas J.S., Barbato A., Collins S.A. et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 2017; 49 (1): 1601090. DOI: 10.1183/13993003.01090-2016.
24. Kuehni C.E., Frischer T., Strippoli M.P. et al. Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur. Respir. J. 2010; 36 (6): 1248–1258. DOI: 10.1183/09031936.0000101023.
25. Mirra V., Werner C., Santamaria F. Primary ciliary dyskinesia: An update on clinical aspects, genetics, diagnosis, and future treatment strategies. Front. Pediatr. 2017; 5: 135. DOI: 10.3389/fped.2017.00135.
26. Lucas J.S., Leigh M.W. Diagnosis of primary ciliary dyskinesia: searching for a gold standard. Eur. Respir. J. 2014; 44 (6): 1418–1422. DOI: 10.1183/09031936.00175614.
27. Shapiro A.J., Zariwala M.A., Ferkol T. et al. Genetic disorders of mucociliary clearance consortium. diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr. Pulmonol. 2016; 51 (2): 115–132. DOI: 10.1002/ppul.23304.
28. Behan L., Dimitrov B.D., Kuehni C.E. et al. PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. Eur. Respir. J. 2016; 47 (4): 1103–1112. DOI: 10.1183/13993003.01551-2015.
29. Nussbaumer M., Kieninger E., Tschanz S.A. et al. Diagnosis of primary ciliary dyskinesia: discrepancy according to different algorithms. ERJ Open Res. 2021; 7 (4): 00353-2021. DOI: 10.1183/23120541.00353-2021.
30. Mizernitskiy Yu.L., Tsaregorodtsev A.D., eds. [Pulmonology of childhood: problems and solutions]. Moscow: MNII pediatrii i detskoy khirurgii; 2005. Issue. 5.
31. Escudier E., Couprie M., Duriez B. et al. Computer-assisted analysis helps detect inner dynein arm abnormalities. Am. J. Respir. Crit. Care Med. 2002; 166 (9): 1257–1262. DOI: 10.1164/rccm.2111070.
32. Shoemark A., Boon M., Brochhausen C. et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM Criteria). Eur. Respir. J. 2020; 55 (4): 1900725. DOI: 10.1183/13993003.00725-2019.
33. Jackson C.L., Behan L., Collins S.A. et al. Accuracy of diagnostic testing in primary ciliary dyskinesia. Eur. Respir. J. 2016; 47 (3): 837–848. DOI: 10.1183/13993003.00749-2015.
34. Knowles M.R., Zariwala M., Leigh M. Primary ciliary dyskinesia. Clin. Chest Med. 2016; 37 (3): 449–461. DOI: 10.1016/j.ccm.2016.04.008.
35. Papon J.F., Coste A., Roudot-Thoraval F. et al. A 20-year experience of electron microscopy in the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 2010; 35 (5): 1057–1063. DOI: 10.1183/09031936.00046209.
36. Wallmeier J., Frank D., Shoemark A. et al. De Novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am. J. Hum. Genet. 2019; 105 (5): 1030–1039. DOI: 10.1016/j.ajhg.2019.09.022.
37. Paff T., Loges N.T., Aprea I. et al. Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am. J. Hum. Genet. 2017; 100 (1): 160–168. DOI: 10.1016/j.ajhg.2016.11.019.
38. Hannah W.B., DeBrosse S., Kinghorn B. et al. The expanding phenotype of OFD1-related disorders: Hemizygous loss-of-function variants in three patients with primary ciliary dyskinesia. Mol. Genet. Genomic Med. 2019; 7 (9): e911. DOI: 10.1002/mgg3.911.
39. Stannard W., O’Callaghan C. Ciliary function and the role of cilia in clearance. J. Aerosol Med. 2006; 19 (1): 110–115. DOI: 10.1089/jam.2006.19.110.
40. Bustamante-Marin X.M., Shapiro A., Sears P.R. et al. Identification of genetic variants in CFAP221 as a cause of primary ciliary dyskinesia. J. Hum. Genet. 2020; 65 (2): 175–180. DOI: 10.1038/s10038-019-0686-1.
41. Fassad M.R., Shoemark A., le Borgne P. et al. C11orf70 mutations disrupting the intraflagellar transport-dependent assembly of multiple axonemal dyneins cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2018; 102 (5): 956–972. DOI: 10.1016/j.ajhg.2018.03.024.
42. Höben I.M., Hjeij R., Olbrich H. et al. Mutations in C11orf70 cause primary ciliary dyskinesia with randomization of left/right body asymmetry due to defects of outer and inner dynein arms. Am. J. Hum. Genet. 2018; 102 (5): 973–984. DOI: 10.1016/j.ajhg.2018.03.025.
43. Watson C.M., Crinnion L.A., Morgan J.E. et al. Robust diagnostic genetic testing using solution capture enrichment and a novel variant-filtering interface. Hum. Mutat. 2014; 35 (4): 434–441. DOI: 10.1002/humu.22490.
44. Fassad M.R., Shoemark A., Legendre M. et al. Mutations in outer dynein arm heavy chain DNAH9 cause motile cilia defects and situs inversus. Am. J. Hum. Genet. 2018; 103 (6): 984–994. DOI: 10.1016/j.ajhg.2018.10.016.
45. Loges N.T., Antony D., Maver A. et al. Recessive DNAH9 loss-of-function mutations cause laterality defects and subtle respiratory ciliary-beating defects. Am. J. Hum. Genet. 2018; 103 (6): 995–1008. DOI: 10.1016/j.ajhg.2018.10.020.
46. El Khouri E., Thomas L., Jeanson L. et al. Mutations in DNAJB13, encoding an HSP40 family member, cause primary ciliary dyskinesia and male infertility. Am. J. Hum. Genet. 2016; 99 (2): 489–500. DOI: 10.1016/j.ajhg.2016.06.022.
47. Olbrich H., Cremers C., Loges N.T. et al. Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexindynein regulatory complex. Am. J. Hum. Genet. 2015; 97 (4): 546– 554. DOI: 10.1016/j.ajhg.2015.08.012.
48. Boon M., Wallmeier J., Ma L. et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Commun. 2014; 5: 4418. DOI: 10.1038/ncomms5418.
49. Hannah W.B., DeBrosse S., Kinghorn B. et al. The expanding phenotype of OFD1-related disorders: Hemizygous loss-of-function variants in three patients with primary ciliary dyskinesia. Mol. Genet. Genomic. Med. 2019; 7 (9): e911. DOI: 10.1002/mgg3.911.
50. Olcese C., Patel M.P., Shoemark A. et al. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat. Commun. 2017; 8: 14279. DOI: 10.1038/ncomms14279.
51. Cindrić S., Dougherty G.W., Olbrich H. et al. SPEF2- and HYDIN-mutant cilia lack the central pair-associated protein SPEF2, aiding primary ciliary dyskinesia diagnostics. Am. J. Respir. Cell. Mol. Biol. 2020; 62 (3): 382–396. DOI: 10.1165/rcmb.2019-0086OC.
52. Liu C., Lv M., He X. et al. Homozygous mutations in SPEF2 induce multiple morphological abnormalities of the sperm flagella and male infertility. J. Med. Genet. 2020; 57 (1): 31–37. DOI: 10.1136/jmedgenet-2019-106011.
53. Liu W., Sha Y., Li Y. et al. Loss-of-function mutations in SPEF2 cause multiple morphological abnormalities of the sperm flagella (MMAF). J. Med. Genet. 2019; 56 (10): 678–684. DOI: 10.1136/jmedgenet-2018-105952.
54. Sha Y., Liu W., Wei X. et al. Biallelic mutations in Sperm flagellum 2 cause human multiple morphological abnormalities of the sperm flagella (MMAF) phenotype. Clin. Genet. 2019; 96 (5): 385–393. DOI: 10.1111/cge.13602.
55. Edelbusch C., Cindrić S., Dougherty G.W. et al. Mutation of serine/ threonine protein kinase 36 (STK36) causes primary ciliary dyskinesia with a central pair defect. Hum Mutat. 2017; 38 (8): 964–969. DOI: 10.1002/humu.23261.
56. Wallmeier J., Shiratori H., Dougherty G.W. et al. TTC25 deficiency results in defects of the outer dynein arm docking machinery and primary ciliary dyskinesia with left-right body asymmetry randomization. Am. J. Hum. Genet. 2016; 99 (2): 460–469. DOI: 10.1016/j.ajhg.2016.06.014.
57. Leigh M.W., Ferkol T.W., Davis S.D. et al. Clinical features and associated likelihood of primary ciliary dyskinesia in children and adolescents. Ann. Am. Thorac. Soc. 2016; 13 (8): 1305–1313. DOI: 10.1513/AnnalsATS.201511-748OC.
58. Ferkol T.W., Puffenberger E.G., Lie H. et al. Primary ciliary dyskinesia-causing mutations in amish and mennonite communities. J. Pediatr. 2013; 163 (2): 383–387. DOI: 10.1016/j.jpeds.2013.01.061.
59. Austin-Tse C., Halbritter J., Zariwala M.A. et al. Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am. J. Hum. Genet. 2013; 93 (4): 672–686. DOI: 10.1016/j.ajhg.2013.08.015.
60. Fedick A.M., Jalas C., Treff N.R. et al. Carrier frequencies of eleven mutations in eight genes associated with primary ciliary dyskinesia in the Ashkenazi Jewish population. Mol. Genet. Genomic Med. 2015; 3 (2): 137–142. DOI: 10.1002/mgg3.124.
61. Morimoto K., Hijikata M., Zariwala M.A. et al. Recurring large deletion in DRC1 (CCDC164) identified as causing primary ciliary dyskinesia in two Asian patients. Mol. Genet. Genomic Med. 2019; 7 (8): e838. DOI: 10.1002/mgg3.838.
62. Mazor M., Alkrinawi S., Chalifa-Caspi V. et al. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am. J. Hum. Genet. 2011; 88 (5): 599–607. DOI: 10.1016/j.ajhg.2011.03.018.
63. Castleman V.H., Romio L., Chodhari R. et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am. J. Hum. Genet. 2009; 84 (2): 197–209. DOI: 10.1016/j.ajhg.2009.01.011.
64. Onoufriadis A., Paff T., Antony D. et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2013; 92 (1): 88–98. DOI: 10.1016/j.ajhg.2012.11.002.
65. Olbrich H., Schmidts M., Werner C. et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am. J. Hum Genet. 2012; 91 (4): 672–684. DOI: 10.1016/j.ajhg.2012.08.016.
66. Casey J.P., McGettigan P.A., Healy F. et al. Unexpected genetic heterogeneity for primary ciliary dyskinesia in the Irish Traveller population. Eur. J. Hum Genet. 2015; 23 (2): 210–217. DOI: 10.1038/ejhg.2014.79.
67. Zariwala M.A., Gee H.Y., Kurkowiak M. et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am. J. Hum Genet. 2013; 93 (2): 336–345. DOI: 10.1016/j.ajhg.2013.06.007.
68. Panizzi J.R., Becker-Heck A., Castleman V.H. et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat. Genet. 2012; 44 (6): 714–719. DOI: 10.1038/ng.2277.
69. Shoemark A., Moya E., Hirst R.A. et al. High prevalence of CCDC103 p.His154Pro mutation causing primary ciliary dyskinesia disrupts protein oligomerisation and is associated with normal diagnostic investigations. Thorax. 2018; 73 (2): 157–166. DOI: 10.1136/thoraxjnl-2017-209999.
70. Daniels M.L., Leigh M.W., Davis S.D. et al. Founder mutation in RSPH4A identified in patients of Hispanic descent with primary ciliary dyskinesia. Hum. Mutat. 2013; 34 (10): 1352–1356. DOI: 10.1002/humu.22371.
71. Zietkiewicz E., Bukowy-Bieryllo Z., Rabiasz A. et al. CFAP300: Mutations in slavic patients with primary ciliary dyskinesia and a role in ciliary dynein arms trafficking. Am. J. Respir. Cell Mol. Biol. 2019; 61 (4): 440–449. DOI: 10.1165/rcmb.2018-0260OC.
72. LUMC Mutalyzer. Name Checker. Available at: https://mutalyzer.nl/name-checker
73. Antibiotics and antimicrobial therapy. [IACMAC recommendations “Determination of sensitivity to antimicrobial drugs (2021)]. Available at: https://www.antibiotic.ru/minzdrav/category/clinical-recommendations/ (in Russian).
74. Kozlov R.S., Sukhorukova M.V. Eydel’shteyn M.V. et al. [Determination of the sensitivity of microorganisms to antimicrobial drugs: clinical guidelines]. Moscow; 2015. Available at: https://www.antibiotic.ru/files/321/clrec-dsma2015.pdf
75. Kobbernagel H.E., Buchvald F.F., Haarman E.G. et al. Efficacy and safety of azithromycin maintenance therapy in primary ciliary dyskinesia (BESTCILIA): a multicentre, double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 2020; 8 (5): 493–505. DOI: 10.1016/S2213-2600(20)30058-8.
76. Hill A.T., Pasteur M., Cornford C. et al. Primary care summary of the British Thoracic Society Guideline on the management of non-cystic fibrosis bronchiectasis. Prim. Care Respir. J. 2011; 20 (2): 135–140. DOI: 10.4104/pcrj.2011.00007.
77. Quon B.S., Goss C.H., Ramsey B.W. Inhaled antibiotics for lower airway infections. Ann. Am. Thorac. Soc. 2014; 11 (3): 425–434. DOI: 10.1513/AnnalsATS.201311-395FR.
78. Brodt A.M., Stovold E., Zhang L. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: a systematic review. Eur. Respir. J. 2014; 44 (2): 382–393. DOI: 10.1183/09031936.00018414.
79. Paff T., Daniels J.M., Weersink E.J. et al. A randomised controlled trial on the effect of inhaled hypertonic saline on quality of life in primary ciliary dyskinesia. Eur. Respir. J. 2017; 49 (2): 1601770. DOI: 10.1183/13993003.01770-2016.
80. Barbato A., Frischer T., Kuehni C.E. et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur. Respir. J. 2009; 34 (6): 1264–1276. DOI: 10.1183/09031936.00176608.
81. Alanin M.C. Bacteriology and treatment of infections in the upper and lower airways in patients with primary ciliary dyskinesia: adressing the paranasal sinuses. Dan. Med. J. 2017; 64 (5): B5361. Available at: http://ugeskriftet.dk/dmj/B5361
82. Raidt J., Brillault J., Brinkmann F. et al. [Management of primary ciliary dyskinesia]. Pneumologie. 2020; 74 (11): 750–765. DOI: 10.1055/a-1235-1520 (in German).
83. Marthin J.K., Lucas J.S., Boon M. et al. International BEAT-PCD consensus statement for infection prevention and control for primary ciliary dyskinesia in collaboration with ERN-LUNG PCD Core Network and patient representatives. ERJ Open Res. 2021; 7 (3): 00301-2021. DOI: 10.1183/23120541.00301-2021.
84. Cohen-Cymberknoh M., Weigert N., Gileles-Hillel A. et al. Clinical impact of Pseudomonas aeruginosa colonization in patients with primary ciliary dyskinesia. Respir. Med. 2017; 131: 241–246. DOI: 10.1016/j.rmed.2017.08.028.
85. Pasteur M.C., Bilton D., Hill A.T. British Thoracic Society Bronchiectasis non-CF Guideline Group. British Thoracic Society guideline for non-CF bronchiectasis. Thorax. 2010; 65 (Suppl. 1): i1–58. DOI: 10.1136/thx.2010.136119.
86. Brodt A.M., Stovold E., Zhang L. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: a systematic review. Eur. Respir. J. 2014; 44 (2): 382–393. DOI: 10.1183/09031936.00018414.
87. Ministry of Health of the Russian Federation. [Cystic fibrosis (cystic fibrosis): Clinical guidelines. 2021 – 2023]. Available at: https://cr.minzdrav.gov.ru/schema/372_2
88. Bergström S.E., Das S. Primary ciliary dyskinesia (immotile-cilia syndrome). 2021. Available at: https://www.uptodate.com/contents/primary-ciliary-dyskinesia-immotile-cilia-syndrome
89. Altenburg J., de Graaff C.S., Stienstra Y. еt al. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA. 2013; 309 (12): 1251–1259. DOI: 10.1001/jama.2013.1937.
90. Li W., Qin Z., Gao J. et al. Azithromycin or erythromycin? Macrolides for non-cystic fibrosis bronchiectasis in adults: a systematic review and adjusted indirect treatment comparison. Chron. Respir. Dis. 2018; 16: 1–9. DOI: 10.1177/1479972318790269.
Review
For citations:
Kondratyeva E.I., Avdeev S.N., Mizernitskiy Yu.L., Polyakov A.V., Chernukha M.Yu., Kondratenko O.V., Namazova-Baranova L.S., Vishneva E.A., Selimzyanova L.R., Simonova O.I., Gembitskaya T.E., Bragina E.E., Rachina S.A., Malakhov A.B., Polyakov D.P., Odinaeva N.D., Kutsev S.I. Primary ciliary dyskinesia: review of the draft clinical guidelines, 2022. PULMONOLOGIYA. 2022;32(4):517-538. (In Russ.) https://doi.org/10.18093/0869-0189-2022-32-4-517-538