1. World Health Organization. Coronavirus disease (COVID-19) pandemic/Situation dashboard. 2021. Доступно на: https://covid19.who.int
2. Huang C., Huang L., Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021; 397 (10270): 220-232. https://doi.org/10.1016/S0140-6736(20)32656-8.
3. National institute for health and care excellence. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: NICE; 2020. Available at: www.nice.org.uk/guidance/ng188
4. Савушкина О.И., Черняк А.В., Крюков Е.В. и др. Динамика функционального состояния системы дыхания через 4 месяца после перенесенного COVID-19. Пульмонология. 2021; 31 (5): 580-586. https://doi.org/10.18093/0869-0189-2021-31-5-580-587.
5. Montani D., Savale L., Noel N. et al. Post-acute COVID-19 syndrome. Eur. Respir. Rev. 2022; 31 (163): 210185. https://doi.org/10.1183/16000617.0185-2021.
6. Zhao Y.M., Shang Y.M., Song W.B. et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine. 2020; 25: 100463. https://doi.org/10.1016/j.eclinm.2020.100463.
7. De Lorenzo R., Conte C., Lanzani C. et al. Residual clinical damage after COVID-19: a retrospective and prospective observational cohort study. PLoS. One. 2020; 15 (10): e0239570. https://doi.org/10.1371/journal.pone.0239570.
8. Bellan M., Soddu D., Balbo P.E. et al. Respiratory and psychophysical sequelae among patients with COVID-19 four months after hospital discharge. JAMA Netw. Open. 2021; 4 (1): e2036142. https://doi.org/10.1001/jamanetworkopen.2020.36142.
9. The writing committee for the COMEBAC study group, Morin L., Savale L. Four-month clinical status of a cohort of patients after hospitalization for COVID-19. JAMA. 2021; 325 (15): 1525-1534. https://doi.org/10.1001/jama.2021.3331.
10. Ghosn J., Piroth L., Epaulard O. et al. Persistent COVID-19 symptoms are highly prevalent 6 months after hospitalization: results from a large prospective cohort. Clin. Microbiol. Infect. 2021; 27 (7): 1041. e1-1041.e4. https://doi.org/10.1016/j.cmi.2021.03.012.
11. Wu X., Liu X., Zhou Y. et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-re-lated hospitalisation: a prospective study. Lancet Respir. Med. 2021; 9 (7): 747-754. https://doi.org/10.1016/S2213-2600(21)00174-0.
12. Mo X., Jian W., Su Z. et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 2020; 55 (6): 2001217. https://doi.org/10.1183/13993003.01217-2020.
13. Hama Amin B.J., Kakamad F.H., Ahmed G.S. et al. Post COVID-19 pulmonary fibrosis; a meta-analysis study. Ann. Med. Surg. (Lond.). 2022; 77: 103590. https://doi.org/10.1016/j.amsu.2022.103590.
14. Mahler D.A., Wells C.K. Evaluation of clinical methods for rating dyspnea. Chest. 1988; 93 (3): 580-586. https://doi.org/10.1378/chest.93.3.580.
15. Johnson M.J., Close L., Gillon S.C. et al. Use of the modified Borg scale and numerical rating scale to measure chronic breathlessness: a pooled data analysis. Eur. Respir. J. 2016; 47 (6): 1861-1864. https://doi.org/10.1183/13993003.02089-2015.
16. Omelyanovskiy V., Musina N., Ratushnyak S. et al. Valuation of the EQ-5D-3L in Russia. Qual. Life Res. 2021; 30 (7): 1997-2007. https://doi.org/10.1007/s11136-021-02804-6.
17. ATS committee on proficiency standards for clinical pulmonary function laboratories. ATS statement: guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002; 166 (1): 111-117. https://doi.org/10.1164/ajrccm.166.1.at1102.
18. Holland A.E., Spruit M.A., Troosters T. et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur. Respir. J. 2014; 44 (6): 1428-1446. https://doi.org/10.1183/09031936.00150314.
19. Чучалин А.Г., Айсанов З.Р., Чикина С.Ю. и др. Федеральные клинические рекомендации Российского респираторного общества по использованию метода спирометрии. Пульмонология. 2014; (6): 11-24. https://doi.org/10.18093/0869-0189-2014-0-6-11-24.
20. Graham B.L., Steenbruggen I., Miller M.R. et al. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement. Am. J. Respir. Crit. Care Med. 2019; 200 (8): e70-88. https://doi.org/10.1164/rccm.201908-1590ST.
21. Российское респираторное общество. Рекомендации Российского респираторного общества по проведению функциональных исследований системы дыхания в период пандемии COVID-19. Версия 1.1. (19.05.2020). Доступно на: https://spulmo.ru/upload/rekomendacii_rro_fvd_COVID_19_rev1_1_01062020.pdf
22. Inui S., Fujikawa A., Jitsu M. et al. Chest CT findings in cases from the cruise ship Diamond Princess with coronavirus disease (COVID-19). Radiol. Cardiothorac. Imaging. 2020; 2 (2): e200110. https://doi.org/10.1148/ryct.2020200110.
23. Морозов С. П., Проценко Д. Н., Сметанина С. И. и др., ред. Лучевая диагностика коронавирусной болезни (COVID-19): организация, методология, интерпретация результатов: препринт № ЦДТ-2020-I. М.: Департамент здравоохранения города Москвы; 2020. Доступно на: https://niioz.ru/upload/iblock/19e/19e3ed390740eaa8ffe5f853f3d7e032.pdf
24. Министерство здравоохранения Российской Федерации. Временные методические рекомендации: Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 15 (22.02.2022). Доступно на: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/original/ВМР_COVID-19_V15.pdf
25. Pierce J.D., Shen Q., Cintron S.A. et al. Post-COVID-19 Syndrome. Nurs. Res. 2022; 71 (2): 164-174. https://doi.org/10.1097/NNR.0000000000000565.
26. Ceban F., Ling S., Lui L.M.W. et al. Fatigue and cognitive impairment in Post-COVID-19 syndrome: a systematic review and me-ta-analysis. Brain Behav. Immun. 2022; 101: 93-135. https://doi.org/10.1016/j.bbi.2021.12.020.
27. Soares M.N. Eggelbusch M., Naddaf E. et al. Skeletal muscle alterations in patients with acute COVID-19 and post-acute sequelae of COVID-19. J. Cachexia Sarcopenia Muscle. 2022; 13 (1): 11-22. https://doi.org/10.1002/jcsm.12896.
28. Alkodaymi M.S., Omrani O.A., Fawzy N.A. et al. Prevalence of postacute COVID-19 syndrome symptoms at different follow-up periods: a systematic review and meta-analysis. Clin. Microbiol. Infect. 2022; 28 (5): 657-666. https://doi.org/10.1016/j.cmi.2022.01.014.
29. Poudel A.N., Zhu S., Cooper N. et al. Impact of COVID-19 on health-related quality of life of patients: a structured review. PLoS. One. 2021; 16 (10): e0259164. https://doi.org/10.1371/journal.pone.0259164.
30. Huang L., Yao Q., Gu X. et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet. 2021; 398 (10302): 747-758. https://doi.org/10.1016/S0140-6736(21)01755-4.
31. Gonzalez J., Benitez I.D., Carmona P. et al. Pulmonary function and radiologic features in survivors of critical COVID-19: a 3-month prospective cohort. Chest. 2021; 160 (1): 187-198. https://doi.org/10.1016/j.chest.2021.02.062.
32. Safont B., Tarraso J., Rodriguez-Borja E. et al. Lung function, radiological findings and biomarkers of fibrogenesis in a Cohort of COVID-19 patients six months after hospital discharge. Arch. Bronconeumol. 2022; 58 (2): 142-149. https://doi.org/10.1016/j.arbres.2021.08.014.
33. Лещенко И.В., Глушкова Т.В. О функциональных нарушениях и развитии фиброза легких у больных, перенесших новую коронавирусную инфекцию. Пульмонология. 2021; 31 (5): 653-662. https://doi.org/10.18093/0869-0189-2021-31-5-653-662.
34. Aul D.R., Gates D.J., Draper D.A. et al. Complications after discharge with COVID-19 infection and risk factors associated with development of post-COVID pulmonary fibrosis. Respir. Med. 2021; 188: 106602. https://doi.org/10.1016/j.rmed.2021.106602.
35. Fortini A., Rosso A., Cecchini P. et al. One-year evolution of DLCO changes and respiratory symptoms in patients with post COVID-19 respiratory syndrome. Infection. 2022; 50 (2): 513-517. https://doi.org/10.1007/s15010-022-01755-5.
36. Laveneziana P., Ses£ L., Gille T. Pathophysiology of pulmonary function anomalies in COVID-19 survivors. Breathe (Sheff.). 2021; 17 (3): 210065. https://doi.org/10.1183/20734735.0065-2021.
37. Wu C., Chen X., Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020; 180 (7): 934-943. https://doi.org/10.1001/jamainternmed.2020.0994.
38. Michalski J.E., Kurche J.S., Schwartz D.A. From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic? Transl. Res. 2022; 241: 13-24. https://doi.org/10.1016/j.trsl.2021.09.001.
39. Hanidziar D., Robson S.C. Hyperoxia and modulation of pulmonary vascular and immune responses in COVID-19. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021; 320 (1): L12-16. https://doi.org/10.1152/ajplung.00304.2020.
40. Ngai J.C., Ko F.W., Ng S.S. et al. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology. 2010; 15 (3): 543-550. https://doi.org/10.1111/j.1440-1843.2010.01720.x.