Preview

PULMONOLOGIYA

Advanced search

Diagnostic value of semi-volatile organic compounds in exhaled breath condensate of asthma and chronic obstructive pulmonary disease patients

https://doi.org/10.18093/0869-0189-2011-0-4-71-75

Abstract

Summary. Asthma and chronic obstructive pulmonary disease (COPD) can exhibit overlapping clinical features; therefore, diagnosis of these diseases can be difficult. Search of new biomarkers represents an active research field in modern respiratory medicine. The objective of this study was to investigate spectrum of semi-volatile organic compounds (SvOCs) in exhaled breath condensate (EBC) of healthy volunteers and patients with asthma and COPD and to assess the possibility for using these biomarkers in differential diagnosis of obstructive lung diseases. Seventy subjects participated in this cross-sectional study: 20 patients with exacerbation of COPD (age, 66.5 Ѓ} 8.5 years; FEV1, 57.3 Ѓ} 22.9 %pred), 20 patients with exacerbation of asthma (age, 50.2 Ѓ} 13.2 years; FEV1, 71.4 Ѓ} 20.7 %pred) and 30 healthy nonsmoking volunteers (age, 25.4 Ѓ} 9.6 years, FEV1, 98.4 Ѓ} 6.8 %pred). EBC was collected using ECoScreen equipment. Testing for SvOC of different polarity was conducted by gas chromatography/mass-spectrometry (GC / MS) method in EBC. The data collected were analyzed using an algorithm based on linear methods of pattern recognition theory. More than a hundred of SvOC in ultra-low concentrations were detected in EBC of the participants; 33 of SvOC were identified; 9 compounds (2.3-dihydro-1-H- inden-1-on, ethyl citrate, decanol-1.2-phenoxyethanol, etc.) had the highest informative value to differentiate the conditions. Mathematical analysis allowed distinguishing healthy volunteers from patients with asthma with reliability of 75 %, healthy subjects from COPD patients with reliability of 85 % and asthma patients from COPD patients with reliability of 83 %. In conclusion, we have developed a highly accurate GC-MS method to measure ultra-low concentrations of SvOC in EBC. This method can be used for diagnosis and differentiation of COPD and asthma.

About the Authors

T. N. Anokhina
ФГУ "НИИ пульмонологии" ФМБА России
Russian Federation


E. Kh. Anaev
ФГУ "НИИ пульмонологии" ФМБА России
Russian Federation


A. I. Revelsky
МГУ имени М.В.Ломоносова
Russian Federation


A. A. Rodionov
МГУ имени М.В.Ломоносова
Russian Federation


D. V. Alexeyev
МГУ имени М.В.Ломоносова
Russian Federation


I. A. Revelsky
МГУ имени М.В.Ломоносова
Russian Federation


V. B. Kudryavtsev
МГУ имени М.В.Ломоносова
Russian Federation


References

1. Чучалин А.Г. (ред.). Глобальная стратегия диагностики, лечения и профилактики хронической обструктивной болезни легких. Пересмотр 2006 г. Пер. с англ. М.: издательский дом "Атмосфера"; 2007.

2. Чучалин А.Г. (ред.). Глобальная стратегия лечения и профилактики бронхиальной астмы. Пересмотр 2006: Пер. с англ. М.: издательский дом "Атмосфера"; 2007.

3. Fabbri L.M., Romagnoli M., Corbetta L. et al. Differences in airway inflammation in patients with fixed airflow obstruction due to asthma or chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2003; 167: 418–424.

4. Decramer M., Selroos O. Asthma and COPD: differences and similarities. With special reference to the usefulness of budesonide / formoterol in a single inhaler (Symbicort) in both diseases. Int. J. Clin. Pract. 2005; 59: 385–398.

5. Guerra S. Overlap of asthma and chronic obstructive pulmonary disease. Curr. Opin. Pulm. Med. 2005; 11: 7–13.

6. Moser B., Bodrogi F., Eibl G. et al. Mass spectrometric profile of exhaled breath-field study by PTR-MS. Respir. Physiol. Neurobiol. 2005; 145: 295–300.

7. Родионов А.А., Ревельский А.И., Ревельский И.А. и др. Хроматомасс-спектрометрическое определение среднелетучих органических веществ в конденсате выдыхаемого воздуха. Масс-спектрометрия 2007; 4 (2): 143–148.

8. Bhattacharya S., Srisuma S., Demeo D.L. et al. Molecular biomarkers for quantitative and discrete COPD phenotypes. Am. J. Respir. Cell. Mol. Biol. 2009; 40: 359–367.

9. Gibson P.G., Simpson J.L. The overlap syndrome of asthma and COPD: what are its features and how important is it? Thorax 2009; 64: 728–735.

10. Brasier A.R., Victor S., Boetticher G. Molecular phenotyping of severe asthma using pattern recognition of bronchoalveolar lavage-derived cytokines. J. Allergy Clin. Immunol. 2008; 121: 30–37.

11. Weston A.D., Hood L. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res. 2004; 3: 179–196.

12. Crameri R. The potential of proteomics and peptidomics for allergy and asthma research. Allergy 2005; 60: 1227–1237.

13. Sepper R., Prikk K. Proteomics: is it an approach to understand the progression of chronic lung disorders? J. Proteome Res. 2004; 3: 277–281.

14. Dragonieri S., Schot R., Mertens B.J. et al. An electronic nose in the discrimination of patients with asthma and controls. J. Allergy Clin. Immunol. 2007; 120: 856–862.

15. Dragonieri S., Annema J.T., Schot R. et al. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 2009; 64: 166–170.

16. Fens N., de Nijs S.B., Roldaan A.C. et al. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am. J. Respir. Crit. Care Med. 2009; 180 (11): 1076–1082.


Review

For citations:


Anokhina T.N., Anaev E.Kh., Revelsky A.I., Rodionov A.A., Alexeyev D.V., Revelsky I.A., Kudryavtsev V.B. Diagnostic value of semi-volatile organic compounds in exhaled breath condensate of asthma and chronic obstructive pulmonary disease patients. PULMONOLOGIYA. 2011;(4):71-75. (In Russ.) https://doi.org/10.18093/0869-0189-2011-0-4-71-75

Views: 973


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)