Preview

Пульмонология

Расширенный поиск

Роль микробиома верхних дыхательных путей в здоровье человека: барьерная функция

https://doi.org/10.18093/0869-0189-2022-32-6-876-884

Аннотация

Дыхательные пути человека представляют собой сложную систему с собственным микробным профилем. До недавнего времени основной интерес научного сообщества вызывали микробные сообщества легких, ассоциированные с различными заболеваниями. В свете пандемии COVID-19 (COronaVIrus Disease 2019) внимание сфокусировалось на микробиоте верхних дыхательных путей (ВДП), которая, как предполагается, может являться одним из факторов, оказывающих влияние на течение вирусных инфекций. Целью обзора, состоящего из 2 частей, явились сбор и анализ известной к настоящему моменту информации о микробных сообществах каждого из отделов ВДП. Часть 2-я посвящена предположительной барьерной функции респираторной микробиоты. Заключение. Приведенные данные позволяют рассматривать микробные сообщества дыхательных путей в качестве участников патогенеза респираторных вирусных инфекций, в т. ч. SARS-CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus 2).

Об авторах

Е. В. Старикова
Федеральный научно-клинический центр физико-химической медицины Федерального медико-биологического агентства
Россия

Старикова Елизавета Валентиновна - младший научный сотрудник лаборатории геномных исследований и вычислительной биологии.

119435, Москва, ул. Малая Пироговская, 1А

тел.: (499) 245-04-71

SPIN-код: 2230-9387


Конфликт интересов:

Конфликт интересов авторами не заявлен



Ю. С. Галеева
Федеральный научно-клинический центр физико-химической медицины Федерального медико-биологического агентства
Россия

Галеева Юлия Сергеевна - лаборант-исследователь лаборатории геномных исследований и вычислительной биологии.

119435, Москва, ул. Малая Пироговская, 1А

тел.: (499) 245-04-71


Конфликт интересов:

Конфликт интересов авторами не заявлен



Е. Н. Ильина
Федеральный научно-клинический центр физико-химической медицины Федерального медико-биологического агентства
Россия

Ильина Елена Николаевна – доктор биологических наук, профессор, член-корреспондент Российской академии наук, заведующая лабораторией геномных исследований и вычислительной биологии, заместитель директора по науке ФНКЦ ФХМ ФМБА.

119435, Москва, ул. Малая Пироговская, 1А

тел.: (499) 245-04-71


Конфликт интересов:

Конфликт интересов авторами не заявлен



Список литературы

1. Selva L., Viana D., Regev-Yochay G. et al. Killing niche competitors by remote-control bacteriophage induction. Proc. Natl. Acad. 5ci. USA. 2009; 106 (4): 1234-1238. DOI: 10.1073/pnas.0809600106.

2. Clauditz A., Resch A., Wieland K.P. et al. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect. Immun. 2006; 74 (8): 4950-4953. DOI: 10.1128/iai.00204-06.

3. Margolis E., Yates A., Levin B.R. The ecology of nasal colonization of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus: the role of competition and interactions with host's immune response. BMC Microbiol. 2010; 10: 59. DOI: 10.1186/14712180-10-59.

4. Bogaert D., van Belkum A., Sluijter M. et al. Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet. 2004; 363 (9424): 1871-1872. DOI: 10.1016/s0140-6736(04)16357-5.

5. Shiri T., Nunes M.C., Adrian P.V. et al. Interrelationship of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus colonization within and between pneumococcal-vaccine naive mother-child dyads. BMCInfect. Dis. 2013;13: 483. DOI: 10.1186/1471-2334-13-483.

6. Pericone C.D., Overweg K., Hermans P.W.M., Weiser J.N. Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect. Immun. 2000; 68 (7): 3990-3997. DOI: 10.1128/iai.68.7.3990-3997.2000.

7. Shakhnovich E.A., King S.J., Weiser J.N. Neuraminidase expressed by Streptococcus pneumoniae desialylates the lipopolysaccharide of neisseria meningitidis and haemophilus influenzae : a paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect. Immun. 2002; 70 (12): 7161-7164. DOI: 10.1128/iai.70.12.7161-7164.2002.

8. Tong H.H., James M., Grants I. et al. Comparison of structural changes of cell surface carbohydrates in the eustachian tube epithelium of chinchillas infected with a Streptococcus pneumoniae neuraminidase-deficient mutant or its isogenic parent strain. Microb. Pathog. 2001; 31 (6): 309-317. DOI: 10.1006/mpat.2001.0473.

9. Miller E.L., Abrudan M.I., Roberts I.S., Rozen D.E. Diverse ecological strategies are encoded by Streptococcus pneumoniae bacterio-cin-like peptides. Genome Biol. Evol. 2016; 8 (4): 1072-1090. DOI: 10.1093/gbe/evw055.

10. Lux T., Nuhn M., Hakenbeck R., Reichmann P. Diversity of bacte-riocins and activity spectrum in Streptococcus pneumoniae. J. Bac-teriol. 2007; 189 (21): 7741-7751. DOI: 10.1128/jb.00474-07.

11. Ikryannikova L.N., Malakhova M.V., Lominadze G.G. et al. Inhibitory effect of streptococci on the growth of M. catarrhalis strains and the diversity of putative bacteriocin-like gene loci in the genomes of S. pneumoniae and its relatives. AMB Express. 2017; 7 (1): 218. DOI: 10.1186/s13568-017-0521-z.

12. Hathaway L.J., Battig P., Reber S. et al. Streptococcus pneumoniae detects and responds to foreign bacterial peptide fragments in its environment. Open Biology. 2014; 4 (4): 130224. DOI: 10.1098/rsob.130224.

13. Iwase T., Uehara Y., Shinji H. et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010; 465 (7296): 346-349. DOI: 10.1038/nature09074.

14. Janek D., Zipperer A., Kulik A. et al. High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors. PLo5 Pathog. 2016; 12 (8): e1005812. DOI: 10.1371/journal.ppat.1005812.

15. Yan M., Pamp S.J., Fukuyama J. et al. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe. 2013; 14 (6): 631-640. DOI: 10.1016/j.chom.2013.11.005.

16. Menberu M.A., Liu S., Cooksley C. et al. Corynebacterium accolens has antimicrobial activity against Staphylococcus aureus and Methicillin-resistant S. aureus pathogens isolated from the sinonasal niche of chronic rhinosinusitis patients. Pathogens. 2021; 10 (2): 207. DOI: 10.3390/pathogens10020207.

17. Abreu N.A., Nagalingam N.A., Song Y. et al. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci. Transl. Med. 2012; 4 (151): 151ra124. DOI: 10.1126/scitranslmed.3003783.

18. Hardy B.L., Dickey S.W., Plaut R.D. et al. Corynebacterium pseu-dodiphtheriticum exploits Staphylococcus aureus virulence components in a novel polymicrobial defense strategy. mBio. 2019; 10 (1): e02491-18. DOI: 10.1128/mbio.02491-18.

19. Kiryukhina N.V., Melnikov V.G., Suvorov A.V. et al. Use of Coryne-bacterium pseudodiphtheriticum for elimination of Staphylococcus aureus from the nasal cavity in volunteers exposed to abnormal microclimate and altered gaseous environment. Probiotics Antimicrob. Proteins. 2013; 5 (4): 233-238. DOI: 10.1007/s12602-013-9147-x.

20. Ramsey M.M., Freire M.O., Gabrilska R.A. et al. Staphylococcus aureus shifts toward commensalism in response to corynebacterium species. Front. Microbiol. 2016; 7: 1230. DOI: 10.3389/fmicb.2016.01230.

21. Stubbendieck R.M., May D.S., Chevrette M.G. et al. Competition among nasal bacteria suggests a role for Siderophore-mediated interactions in shaping the human nasal microbiota. Appl. Environ. Microbiol. 2019; 85 (10): e02406-18. DOI: 10.1128/AEM.02406-18.

22. Bomar L., Brugger S.D., Yost B.H. et al. Corynebacterium acco-lens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. MBio. 2016; 7 (1): e01725-15. DOI: 10.1128/mbio.01725-15.

23. Wollenberg M.S., Claesen J., Escapa I.F. et al. Propionibacteri-um-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. MBio. 2014; 5 (4): e01286-14. DOI: 10.1128/mbio.01286-14.

24. Lo C.W., Lai Y.K., Liu Y.T. et al. Staphylococcus aureus hijacks a skin commensal to intensify its virulence: immunization targeting в-hemolysin and CAMP factor. J. Invest. Dermatol. 2011; 131 (2): 401-409. DOI: 10.1038/jid.2010.319.

25. Scholz C.F.P., Kilian M. The natural history of cutaneous propioni-bacteria, and reclassification of selected species within the genus Pro-pionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int. J. Syst. Evol. Microbiol. 2016; 66 (11): 4422-4432. DOI: 10.1099/ijsem.0.001367.

26. Shu M., Wang Y., Yu J. et al. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One. 2013; 8 (2): e55380. DOI: 10.1371/journal.pone.0055380.

27. Wang Y., Kuo S., Shu M. et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl. Microbiol. Biotechnol. 2014; 98 (1): 411-424. DOI: 10.1007/s00253-013-5394-8.

28. Christensen G.J.M., Scholz C.F.P., Enghild J. et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genomics. 2016; 17: 152. DOI: 10.1186/s12864-016-2489-5.

29. Escapa I.F., Chen T., Huang Y. et al. New insights into human nostril microbiome from the expanded human oral microbiome database (eHOMD): a resource for the microbiome of the human aerodigestive tract. 2018; 3 (6): e00187-18. DOI: 10.1101/347013.

30. Laufer A.S., Metlay J.P., Gent J.F. et al. Microbial communities of the upper respiratory tract and otitis media in children. MBio. 2011; 2 (1): e00245-10. DOI: 10.1128/mbio.00245-10.

31. Brugger S.D., Eslami S.M., Pettigrew M.M. et al. Dolosigranulum pigrum cooperation and competition in human nasal microbiota. mSphere. 2020; 5 (5): е00852-20. DOI: 10.1128/mSphere.00852-20.

32. Tashiro M., Ciborowski P., Klenk H.D. et al. Role of Staphylococcus protease in the development of influenza pneumonia. Nature. 1987; 325 (6104): 536-537. DOI: 10.1038/325536a0.

33. Tashiro M., Ciborowski P., Reinacher M. et al. Synergistic role of staphylococcal proteases in the induction of influenza virus pathogenicity. Virology. 1987; 157 (2): 421-430. DOI: 10.1016/0042-6822(87)90284-4.

34. Ayala V.I., Teijaro J.R., Farber D.L. et al. Bordetella pertussis infection exacerbates influenza virus infection through pertussis toxin-mediated suppression of innate immunity. PLoS One. 2011; 6 (4): e19016. DOI: 10.1371/journal.pone.0019016.

35. van den Bergh M.R., Biesbroek G., Rossen J.W.A. et al. Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria. PLoS One. 2012; 7 (10): e47711. DOI: 10.1371/journal.pone.0047711.

36. de Steenhuijsen Piters W.A.A., Heinonen S., Hasrat R. et al. Nasopharyngeal microbiota, host transcriptome, and disease severity in children with respiratory syncytial virus infection. Am. J. Re-spir. Crit. Care Med. 2016; 194 (9):1104-1115. DOI: 10.1164/rccm.201602-0220oc.

37. Short K.R., Vissers M., de Kleijn S. et al. Bacterial lipopolysaccharide inhibits influenza virus infection of human macrophages and the consequent induction of CD8+ T-cell immunity. J. Innate Immun. 2014; 6 (2): 129-139. DOI: 10.1159/000353905.

38. Abt M.C., Osborne L.C., Monticelli L.A. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity. 2012; 37 (1): 158-170. DOI: 10.1016/j.immuni.2012.04.011.

39. Wang J., Li F., Sun R. et al. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat. Commun. 2013; 4: 2106. DOI: 10.1038/ncomms3106.

40. Kanmani P., Clua P., Vizoso-Pinto M.G. et al. Respiratory commensal bacteria Corynebacterium pseudodiphtheriticum Improves resistance of infant mice to respiratory syncytial virus and Streptococcus pneumoniae superinfection. Front. Microbiol. 2017; 8: 1613. DOI: 10.3389/fmicb.2017.01613.

41. McCullers J.A., Rehg J.E. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J. Infect. Dis. 2002; 186 (3): 341-350. DOI: 10.1086/341462.

42. Nardelli C., Gentile I., Setaro M. et al. Nasopharyngeal microbiome signature in COVID-19 positive patients: can we definitively get a role to Fusobacterium periodonticum? Front. Cell. Infect. Microbiol. 2021; 11: 625581. DOI: 10.3389/fcimb.2021.625581.

43. Yoneda S., Loeser B., Feng J. et al. Ubiquitous sialometabolism present among oral fusobacteria. PLoS One. 2014; 9 (6): e99263. DOI: 10.1371/journal.pone.0099263.

44. Morniroli D., Gianni M.L., Consales A. et al. Human Sialome and Coronavirus disease-2019 (COVID-19) pandemic: an understated correlation? Front. Immunol. 2020; 11: 1480. DOI: 10.3389/fim-mu.2020.01480.

45. Honarmand Ebrahimi K. SARS-CoV-2 spike glycoprotein-binding proteins expressed by upper respiratory tract bacteria may prevent severe viral infection. FEBS Lett. 2020; 594 (11): 1651-1660. DOI: 10.1002/1873-3468.13845.

46. Harvey H.A., Swords W.E., Apicella M.A. The mimicry of human glycolipids and glycosphingolipids by the lipooligosaccharides of pathogenic Neisseria and Haemophilus. J. Autoimmun. 2001: 16 (3): 257-262. DOI: 10.1006/jaut.2000.0477.

47. Rosas-Salazar C., Kimura K.S., Shilts M.H. et al. SARS-CoV-2 infection and viral load are associated with the upper respiratory tract microbiome. J. Allergy Clin. Immunol. 2021; 147 (4): 1226-1233.e2. DOI: 10.1016/j.jaci.2021.02.001.

48. Feehan A.K., Rose R., Nolan D.J. et al. Nasopharyngeal microbiome community composition and structure is associated with severity of COVID-19 disease and breathing treatment. Appl. Microbiol. 2021; 1 (2): 177-188. DOI: 10.3390/applmicrobiol1020014.

49. De Maio F., Posteraro B., Ponziani F.R. et al. Nasopharyngeal microbiota profiling of SARS-CoV-2 infected patients. Biol. Proced. Online. 2020; 22: 18. DOI: 10.1186/s12575-020-00131-7.

50. Zhang H., Ai J.W., Yang W. et al. Metatranscriptomic characterization of coronavirus disease 2019 identified a host transcriptional classifier associated with immune signaling. Clin. Infect. Dis. 2021; 73 (3): 376-385. DOI: 10.1093/cid/ciaa663.

51. Engen P.A., Naqib A., Jennings C. et al. Nasopharyngeal microbiota in SARS-CoV-2 positive and negative patients. Biol. Proced. Online. 2021; 23 (1): 10. DOI: 10.1186/s12575-021-00148-6.

52. Liu J., Liu S., Zhang Z. et al. Association between the nasopharyngeal microbiome and metabolome in patients with COVID-19. Synth. Syst. Biotechnol. 2021; 6 (3): 135-143. DOI: 10.1016/j.synbio.2021.06.002.

53. Ma S., Zhang F., Zhou F. et al. Metagenomic analysis reveals oropharyngeal microbiota alterations in patients with COVID-19. Signal Transduct. Target. Ther. 2021; 6 (1): 191. DOI: 10.1038/s41392-021-00614-3.


Дополнительные файлы

Рецензия

Для цитирования:


Старикова Е.В., Галеева Ю.С., Ильина Е.Н. Роль микробиома верхних дыхательных путей в здоровье человека: барьерная функция. Пульмонология. 2022;32(6):876-884. https://doi.org/10.18093/0869-0189-2022-32-6-876-884

For citation:


Starikova E.V., Galeeva Yu.S., Il’ina E.N. The upper respiratory tract microbiome and its role in human health: barrier function. PULMONOLOGIYA. 2022;32(6):876-884. (In Russ.) https://doi.org/10.18093/0869-0189-2022-32-6-876-884

Просмотров: 508


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)