Preview

PULMONOLOGIYA

Advanced search

Secretory immunoglobulin A of the respiratory system and COVID-19

https://doi.org/10.18093/0869-0189-2021-31-6-792-798

Abstract

The main focus in the course of COVID-19 goes on assessing the overall immune response. The role of mucosal immunity in this disease has not been studied sufficiently.

The study aimed to analyze published data about secretory IgA as a significant indicator of the mucosal immune response of the respiratory tract in the context of the COVID-19 pandemic.

Methods. Articles were identified via PubMed bibliographic database. The time-span of research was two years (2020, 2021).

Results. The search identified 54 articles. There is evidence that secretory IgA (sIgA) is the main antibody isotype of the mucosal immunity. It is produced in quantities significantly higher than those of all other isotypes of immunoglobulins combined. sIgA antibodies are effective against various pathogens, including the SARS-CoV-2 virus, due to mechanisms such as neutralization, suppression of adhesion to the mucosal surface and invasion of epithelial cells, agglutination and facilitating the removal of pathogenic microorganisms with the mucosal secretions. Virus-specific IgA antibodies in the blood serum are detected in patients with COVID-19 as early as two days after the first symptoms, while IgM or IgG class antibodies appear only after 5 days. We accessed the efficacy of intranasal immunization as to induction of predominant production of sIgA in the upper and lower respiratory tract.

Conclusion. The current information on the local immune response of the respiratory mucosa is important for understanding the pathophysiological mechanisms of the disease, diagnosis, and development of new methods of treatment and prevention of COVID-19.

About the Authors

Nadezhda O. Kryukova
Pirogov Russian National Research Medical University (Pirogov Medical University), Healthcare Ministry of Russia
Russian Federation

Assistant, Post-Graduate Student, Department of Hospital Therapy, Pediatrics Faculty.

Ul. Ostrovityanova 1, Moscow, 117997; tel.: (926) 045-21-06


Competing Interests:

нет



Ekaterina B. Rakunova
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University)
Russian Federation

Candidate of Medicine, Otorhinolaryngologist, Assistant, Department of Ear, Throat and Nose Diseases.

Ul. Trubetskaya 8, build. 2, Moscow, 119991; tel.: (910) 403-16-26


Competing Interests:

нет



M. P. Kostinov
Federal State Budgetary Scientific Institution I.Mechnikov Research Institute of Vaccines and Sera; Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University)
Russian Federation

Doctor of Medicine, Professor; Department of Epidemiology and Modern Vaccination Technologies, Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov, Head of the Laboratory for Vaccine Prevention and Immunotherapy of Allergic DiseasesI.Mechnikov R IV.

Maly Kazenny per. 5A, Moscow, 105064; Ul. Trubetskaya 8, build. 2, Moscow, 119991; tel.: (963) 782-35-23


Competing Interests:

нет



Irina A. Baranova
Pirogov Russian National Research Medical University (Pirogov Medical University), Healthcare Ministry of Russia
Russian Federation

Doctor of Medicine, Professor, Department of Hospital Therapy, Pediatrics Faculty.

Ul. Ostrovityanova 1, Moscow, 117997, tel.: (499) 780-08-16



Oxana A. Svitich
Pirogov Russian National Research Medical University (Pirogov Medical University), Healthcare Ministry of Russia; Federal State Budgetary Scientific Institution I.Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Doctor of Medicine, Professor, Corresponding Member of Russian Academy of Sciences, Director, I.Mechnikov RIVS; Professor, Department of Immunology, Faculty of Medicine and Biology, Pirogov RNRMU (Pirogov Medical University).

Ul. Ostrovityanova 1, Moscow, 117997; Maly Kazenny per. 5A, Moscow, 105064; тел.: (495) 917-49-00


Competing Interests:

нет



References

1. Azkur A.K., Akdis M., Azkur D. et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020; 75 (7): 1564-1581. DOI: 10.1111/all.14364.

2. Zhu N., Zhang D., Wang W. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020; 382 (8): 727-733. DOI: 10.1056/NEJMoa2001017.

3. Russell M.W., Moldoveanu Z., Ogra P.L., Mestecky J. Mucosal immunity in COVID-19: A neglected but critical aspect of SARS-CoV-2 infection. Front. Immunol. 2020; 11: 611337. DOI: 10.3389/fimmu.2020.611337.

4. Mason R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J. 2020; 55 (4): 2000607. DOI: 10.1183/13993003.00607-2020.

5. Zhou P., Yang X.L., Wang X.G. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579 (7798): 270-273. DOI: 10.1038/s41586-020-2012-7.

6. Sungnak W., Huang N., Bdcavin C. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020; 26 (5): 681-687. DOI: 10.1038/s41591-020-0868-6.

7. Brann D.H., Tsukahara T., Weinreb C. et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020; 6 (31): eabc5801. DOI: 10.1126/sciadv.abc5801.

8. van Ginkel F.W., Nguyen H.H., McGhee J.R. Vaccines for mucosal immunity to combat emerging infectious diseases. Emerg. Infect. Dis. 2000; 6 (2): 123-132. DOI: 10.3201/eid0602.000204.

9. Kubagawa H., Bertoli L.F., Barton J.C. et al. Analysis of paraprotein transport into the saliva by using anti-idiotype antibodies. J. Immunol. 1987; 138 (2): 435-439. PMID: 3794339. Available at: https://www.jimmunol.org/content/138/2/435

10. Mestecky J., Moldoveanu Z., Smith P.D. et al. Mucosal immunology of the genital and gastrointestinal tracts and HIV-1 infectio. J. Reprod. Immunol. 2009; 83 (1-2): 196-200. DOI: 10.1016/j.jri.2009.07.005.

11. Holmgren J., Czerkinsky C. Mucosal immunity and vaccines. Nat. Med. 2005; 11 (4, Suppl.): S45-53. DOI: 10.1038/nm1213.

12. Tlaskalovd-Hogenovd H., Tuckovd L., Lodinovd-Zddnikovd R. Mucosal immunity: its role in defense and allergy. Int. Arch. Allergy Immunol. 2002; 128 (2): 77-89. DOI: 10.1159/000059397.

13. Li Y., Jin L., Chen T. The effects of secretory IgA in the mucosal immune system. Biomed. Res. Int. 2020; 2020: 2032057. DOI: 10.1155/2020/2032057.

14. Kanner E.V., Gorelov A.V., Pechkurov D.V. et al. [Mucosal immune system of the digestive and respiratory tract: possibilities of prevention and treatment of infectious diseases]. Meditsinskiy sovet. 2019; (11): 100-107. Available at: https://www.med-sovet.pro/jour/issue/viewFile/141/78 (in Russian).

15. Kozlov I.G Microbiota, mucosal immunity and antibiotics: subtleties of interaction. Russkiy meditsinskiy zhurnal. 2018; 8 (1): 19-27. Доступно на: Available at: https://www.rmj.ru/articles/allergologiya/Mikrobiota_mukozalynyy_immunitet_iantibiotiki_tonkosti_vzaimodeystviya/ (in Russian).

16. Karaulov A.V. (ed.). [New in the physiology of mucosal immunity]. Moscow: Sechenov University publishing house, 2015 (in Russian).

17. Pilette C., Ouadrhiri Y., Godding V. et al. Lung mucosal immunity: immunoglobulin-A revisited. Eur. Respir. J. 2001; 18 (3): 571-588. DOI: 10.1183/09031936.01.00228801.

18. Tschernig T., Pabst R. Bronchus-associated lymphoid tissue (BALT) is not present in the normal adult lung but in different diseases. Patho-biology. 2000; 68 (1): 1-8. DOI: 10.1159/000028109.

19. Leiva-Judrez M.M., Kolls J.K., Evans S.E. Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense. Mucosal Immunol. 2018; 11 (1): 21-34. DOI: 10.1038/mi.2017.71.

20. Evans S.E., Tuvim M.J., Fox C.J. et al. Inhaled innate immune ligands to prevent pneumonia. Br. J. Pharmacol. 2011; 163 (1): 195— 206. DOI: 10.1111/j.1476-5381.2011.01237.x.

21. Tuvim M.J., Gilbert B.E., Dickey B.F., Evans S.E. Synergistic TLR2/6 and TLR9 activation protects mice against lethal influenza pneumonia. PLoS One. 2012; 7 (1): e30596. DOI: 10.1371/journal.pone.0030596.

22. Afanas’ev S. S., Aleshkin V. A., Voropaeva E. A. et al. [Microbiocenoses of open cavities and mucosal immunity]. Effektivnaya farma-koterapiya. 2013; 27 (2): 6-11. Available at: https://umedp.ru/upload/iblock/1f1/1f1a844e7ab97c393f6dbeb7992112f4.pdf (in Russian).

23. Shi Y., Wang Y., Shao C. et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020; 27 (5): 1451-1454. DOI: 10.1038/s41418-020-0530-3.

24. Mestecky J., Strober W., Russell M.W. et al. (eds). Mucosal Immunology. 4th ed. Amsterdam: Elsevier, Academic Press; 2015.

25. Pabst R., Russell M.W., Brandtzaeg P. Tissue distribution of lymphocytes and plasma cells and the role of the gut. Trends Immunol. 2008; 29 (5): 206-208. DOI: 10.1016/j.it.2008.02.006.

26. Steffen U., Koeleman C.A., Sokolova M.V. et al. IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat. Commun. 2020; 11 (1): 120. DOI: 10.1038/s41467-019-13992-8.

27. Woof J.M., Russell M.W. Structure and function relationships in IgA. Mucosal Immunol. 2011; 4 (6): 590-597. DOI: 10.1038/mi.2011.39.

28. Baker K., Blumberg R.S., Kaetzel C.S. Immunoglobulin transport and immunoglobulin receptors. In: Mestecky J., Strober W., Russell M.W. et al. (eds). Mucosal Immunology. 4th ed. Amsterdam: Elsevier, Academic Press; 2015: 349-407. DOI: 10.1016/B978-0-12-415847-4.00019-7.

29. Russell M., Kalian M., Mantis N., Orthdsy B. Biological activities of mucosal immunoglobulins. In: Mestecky J., Strober W., Russell M.W. et al. (eds). Mucosal Immunology. 4th ed. Amsterdam: Elsevier, Academic Press; 2015: 429-454.

30. Bidgood S.R., Tam J.C., McEwan W.A. et al. Translocalized IgA mediates neutralization and stimulates innate immunity inside infected cells. Proc. Natl. Acad. Sci. USA. 2014; 111 (37): 13463-13468. DOI: 10.1073/pnas.1410980111.

31. Varadhachary A., Chatterjee D., Garza J. et al. Salivary anti-SARS-CoV-2 IgA as an accessible biomarker of mucosal immunity against COVID-19. medRxiv. 2020; 2020.08.07.20170258 [Preprint. Posted: August 11, 2020]. DOI: 10.1101/2020.08.07.20170258.

32. Boehm M K., Woof J.M., Kerr M.A., Perkins S.J. The fab and fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling. J. Mol. Biol. 1999; 286 ( 5): 1421-1447. DOI: 10.1006/jmbi.1998.2556.

33. Ejemel M., Li Q., Hou S. et al. A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction. Nat. Commun. 2020; 11 (1): 4198. DOI: 10.1038/s41467-020-18058-8.

34. Cervia C., Nilsson J., Zurbuchen Y. et al. Systemic and mucosal antibody responses specific to SARS-CoV-2 during mild versus severe COVID-19. J. Allergy Clin. Immunol. 2021; 147 (2): 545-557.e9. DOI: 10.1016/j.jaci.2020.10.040.

35. Schulz K. S., Mossman K.L. Viral evasion strategies in type I IFN signaling - A summary of recent developments. Front. Immunol. 2016; 7: 498. DOI: 10.3389/fimmu.2016.00498.

36. Hu Y., Li W., Gao T. et al. The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination. J. Virol. 2017; 91 (8): e02143-16. DOI: 10.1128/JVI.02143-16.

37. Blanco-Melo D., Nilsson-Payant B.E., Liu W.C. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020; 181 (5): 1036-1045.e9. DOI: 10.1016/j.cell.2020.04.026.

38. Amanna I.J., Slifka M.K. Mechanisms that determine plasma cell lifespan and the duration of humoral immunity. Immunol. Rev. 2010; 236 (1): 125-138, DOI: 10.1111/j.1600-065X.2010.00912.x.

39. Faustini S.E., Jossi S.E., Perez-Toledo M. et al. Detection of antibodies to the SARS-CoV-2 spike glycoprotein in both serum and saliva enhances detection of infection. medRxiv. 2020; 2020.06.16.20133025. [Preprint. Posted: June 18, 2020]. DOI: 10.1101/2020.06.16.20133025.

40. Ma H., Zeng W., He H. et al. Serum IgA, IgM, and IgG responses in COVID-19. Cell. Mol. Immunol. 2020; 17 (7): 773-775. DOI: 10.1038/s41423-020-0474-z.

41. Isho B., Abe K.T., Zuo M. et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Immunol. 2020; 5 (52): eabe5511. DOI: 10.1126/sciim-munol.abe5511.

42. Wang Z., Lorenzi J.C.C., Muecksch F. et al. Enhanced SARS-CoV-2 neutralization by secretory IgA in vitro. bioRxiv. 2020; 2020.09.09.288555. [Preprint. Posted: September 09, 2020]. DOI: 10.1101/2020.09.09.288555.

43. Brandtzaeg P. Secretory immunity with special reference to the oral cavity. J. Oral. Microbiol. 2013; 5 (1): 20401. DOI: 10.3402/jom.v5i0.20401.

44. Xue M., Zhang T., Hu H. et al. Predictive effects of IgA and IgG combination to assess pulmonary exudation progression in COVID-19 patients. J. Med. Virol. 2021; 93 (3): 1443-1448. DOI: 10.1002/jmv.26437.

45. Vabret N., Britton G.J., Gruber C. et al. Immunology of COVID-19: current state of the science. Immunity. 2016; 52 (6): 910-941. DOI: 10.1016/j.immuni.2020.05.002.

46. Bleier B.S., Ramanathan M., Lane A.P. COVID-19 vaccines may not prevent nasal SARS-CoV-2 infection and asymptomatic transmission. Otolaryngol. Head Neck Surg. 2020; 164 (2): 305-307. DOI: 10.1177/0194599820982633.

47. Hassan A.O., Kafai N.M., Dmitriev I.P. et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell. 2020; 183 (1): 169-184.e13. DOI: 10.1016/j.cell.2020.08.026.

48. Mudgal R., Nehul S., Tomar S. Prospects for mucosal vaccine: shutting the door on SARS-CoV-2. Hum. Vaccin. Immunother. 2020; 16 (12): 2921-2931. DOI: 10.1080/21645515.2020.1805992.

49. Amanat F., Krammer F. SARS-CoV-2 vaccines: status report. Immunity. 2020; 52 (4): 583-589. DOI: 10.1016/j.immuni.2020.03.007.

50. Yong C.Y., Ong H.K., Yeap S.K. et al. Recent advances in the vaccine development against middle east respiratory syndrome-coronavirus. Front. Microbiol. 2019; 10: 1781. DOI: 10.3389/fmicb.2019.01781.

51. Neutra M.R., Kozlowski P.A. Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol. 2006; 6 (2): 148-58. DOI: 10.1038/nri1777.

52. Conley M.E., Delacroix D.L. Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann. Intern. Med. 1987; 106 (6): 892-899. DOI: 10.7326/0003-4819-106-6-892.

53. King R.G., Silva-Sanchez A., Peel J.N. et al. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 in mice. bioRxiv. 2020; 2020.10.10.331348. [Preprint. Posted: October 11, 2020]. DOI: 10.1101/2020.10.10.331348.

54. Ku M.W., Bourgine M., Authi6 P. et al. Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models. Cell Host Microbe. 2021; 29 (2): 236-249.e6. DOI: 10.1016/j.chom.2020.12.010.


Review

For citations:


Kryukova N.O., Rakunova E.B., Kostinov M.P., Baranova I.A., Svitich O.A. Secretory immunoglobulin A of the respiratory system and COVID-19. PULMONOLOGIYA. 2021;31(6):792-798. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-6-792-798

Views: 1493


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)