Obstructive sleep apnea and cardiovascular comorbidity: modern discordance in assessing the effectiveness of CPAP-therapy against the pathogenetic mechanisms and cardiovascular diseases
https://doi.org/10.18093/0869-0189-2021-31-6-799-807
Abstract
Sleep-disordered breathing (and obstructive sleep apnea, OSA) is a common pathology in the general population in economically developed countries. In the last decades, CPAP therapy (continuous positive airway pressure) became the first-choice treatment option in clinically relevant OSA.
Objective. The review summarized available evidence about the effects of CPAP-therapy on the main pathogenetic pathways of OSA (sleep-related sympathetic activity, vascular inflammation, endothelial dysfunction, oxidative stress, and blood coagulation) and cardiovascular diseases (CVDs - hypertension, cardiac arrhythmias, heart failure, pulmonary hypertension, coronary heart disease, and combined cardiovascular outcomes, including cardiovascular mortality).
Methods. We analyzed the data of the randomized observational cohort clinical trials and metaanalyses, which assessed the effects of CPAP-therapy on the pathophysiological mechanisms of OSA and the associated CVDs. We also analyzed current guidelines on the management of patients with CVDs and OAS. We searched the following databases: Scopus, Pubmed, Google Scholar, Russian Scientific Citation Index.
Results. Despite the rather recent implementation of this method, the accumulated evidence shows its favorable impact on OSA pathogenesis (on sympathetic activity and, to some extent, on vascular inflammation and endothelial dysfunction) and CVDs (hypertension, in particular, resistant hypertension, and paroxysmal atrial fibrillation). The observational studies also demonstrate favorable outcomes regarding other CVDs. However, the data of the randomized clinical trials are limited or controversial, the samples are rather small, which leads to inconsistent conclusions.
Conclusion. Currently, most of the researchers emphasize that the required CPAP-adherence level (regular use for at least 4 h nightly) is the main barrier to getting the high-level evidence of CPAP efficiency with regard to the cardiovascular risk. This factor becomes the biggest limitation in patients who are characterized by the low compliance because they are not prone to daytime sleepiness.
About the Authors
Mikhail V. AgaltsovRussian Federation
Candidate of Medicine, Senior Researcher, Department of Fundamental and Applied Aspects of Obesity.
Petroverigskiy per. 10, build. 3, Moscow, 101990; tel.: (903) 123-06-57
Competing Interests:
no
Lyudmila S. Korostovtseva
Russian Federation
Candidate of Medicine, Senior Researcher, Som-nology Group, Research Department for Hypertension, Associate Professor, Department of Cardiology.
Akkuratova ul. 2, Saint-Petersburg, 197341; tel.: (921) 787-35-48
Competing Interests:
no
References
1. Heinzer R., Vat S., Marques-Vidal P. et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir. Med. 2015; 3 (4): 310-318. DOI: 10.1016/S2213-2600(15)00043-0.
2. Javaheri S., Barbe F., Campos-Rodriguez F. et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J. Am. Coll. Cardiol. 2017; 69 (7): 841-858. DOI: 10.1016/j.jacc.2016.11.069.
3. Patil S.P., Ayappa IA., Caples S.M. et al. Treatment of adult obstructive sleep apnea with positive airway pressure: an American Academy of Sleep Medicine clinical practice guideline. J. Clin. Sleep Med. 2019; 15 (2): 335-343. DOI: 10.5664/jcsm.7640.
4. Heitmann J., Ehlenz K., Penzel T. et al. Sympathetic activity is reduced by nCPAP in hypertensive obstructive sleep ap-noea patients. Eur. Respir. J. 2004; 23 (2): 255-262. DOI: 10.1183/09031936.04.00015604.
5. Henderson L.A., Fatouleh R.H., Lundblad L.C. et al. Effects of 12 months continuous positive airway pressure on sympathetic activity related brainstem function and structure in obstructive sleep apnea. Front. Neurosci. 2016; 10: 90. DOI: 10.3389/fnins.2016.00090.
6. Jullian-Desayes I., Joyeux-Faure M., Tamisier R. et al. Impact of obstructive sleep apnea treatment by continuous positive airway pressure on cardiometabolic biomarkers: a systematic review from sham CPAP randomized controlled trials. Sleep Med. Rev. 2015; 21: 23-38. DOI: 10.1016/j.smrv.2014.07.004.
7. Ziegler M.G., Mills P.J., Loredo J.S. et al. Effect of continuous positive airway pressure and placebo treatment on sympathetic nervous activity in patients with obstructive sleep apnea. Chest. 2001; 120 (3): 887-893. DOI: 10.1378/chest.120.3.887.
8. Alonso-Ferndndez A., Garcia-Rio F., Arias M.A. et al. Effects of CPAP on oxidative stress and nitrate efficiency in sleep apnoea: a randomised trial. Thorax. 2009; 64 (7): 581-586. DOI: 10.1136/thx.2008.100537.
9. Noda A., Nakata S., Koike Y. et al. Continuous positive airway pressure improves daytime baroreflex sensitivity and nitric oxide production in patients with moderate to severe obstructive sleep apnea syndrome. Hypertens. Res. 2007; 30 (8): 669-676. DOI: 10.1291/hypres.30.669.
10. Thunstrom E., Manhem K., Yucel-Lindberg T. et al. Neuroendocrine and inflammatory responses to losartan and continuous positive airway pressure in patients with hypertension and obstructive sleep apnea: A randomized controlled trial. Ann. Am. Thorac. Soc. 2016; 13 (11): 2002-2011. DOI: 10.1513/annalsats.201602-126oc.
11. Carpagnano G.E., Kharitonov S.A., Resta O. et al. 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest. 2003; 124 (4): 1386-1392. DOI: 10.1378/chest.124.4.1386.
12. Barceld A., Barbe F., de la Pena M. et al. Antioxidant status in patients with sleep apnoea and impact of continuous positive airway pressure treatment. Eur. Respir. J. 2006; 27 (4): 756-760. DOI: 10.1183/09031936.06.00067605.
13. Christou K., Kostikas K., Pastaka C. et al. Nasal continuous positive airway pressure treatment reduces systemic oxidative stress in patients with severe obstructive sleep apnea syndrome. Sleep Med. 2009; 10 (1): 87-94. DOI: 10.1016/j.sleep.2007.10.011.
14. Guo Y., Pan L., Ren D., Xie X. Impact of continuous positive airway pressure on C-reactive protein in patients with obstructive sleep apnea: a meta-analysis. Sleep Breath. 2013; 17 (2): 495-503. DOI: 10.1007/s11325-012-0722-2.
15. Xie X., Pan L., Ren D. et al. Effects of continuous positive airway pressure therapy on systemic inflammation in obstructive sleep apnea: a meta-analysis. Sleep Med. 2013; 14 (11): 1139-1150. DOI: 10.1016/j.sleep.2013.07.006.
16. Ohga E., Tomita T., Wada H. et al. Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. J. Appl. Physiol. (1985). 2003; 94 (1): 179-184. DOI: 10.1152/japplphysiol.00177.2002.
17. Kritikou I., Basta M., Vgontzas A.N. et al. Sleep apnoea, sleepiness, inflammation and insulin resistance in middle-aged males and females. Eur. Respir. J. 2014; 43 (1): 145-155. DOI: 10.1183/09031936.00126712.
18. Thunstrom E., Glantz H., Yucel-Lindberg T. et al. CPAP does not reduce inflammatory biomarkers in patients with coronary artery disease and nonsleepy obstructive sleep apnea: a randomized controlled trial. Sleep. 2019; 42 (2). DOI: 10.1093/sleep/zsy241.
19. Bayram N.A., Ciftci B., Keles T. et al. Endothelial function in nor-motensive men with obstructive sleep apnea before and 6 months after CPAP treatment. Sleep. 2009; 32 (10): 1257-1263. DOI: 10.1093/sleep/32.10.1257.
20. Phillips B.G., Narkiewicz K., Pesek C.A. et al. Effects of obstructive sleep apnea on endothelin-1 and blood pressure. J. Hypertens. 1999; 17 (1): 61-66. DOI: 10.1097/00004872-199917010-00010.
21. Cross M.D., Mills N.L., Al-Abri M. et al. Continuous positive airway pressure improves vascular function in obstructive sleep apnoea/ hypopnoea syndrome: a randomised controlled trial. Thorax. 2008; 63 (7): 578-583 DOI: 10.1136/thx.2007.081877.
22. Simpson P.J., Hoyos C.M., Celermajer D. et al. Effects of continuous positive airway pressure on endothelial function and circulating progenitor cells in obstructive sleep apnoea: a randomised sham-controlled study. Int. J. Cardiol. 2013; 168 (3): 2042-2048. DOI: 10.1016/j.ijcard.2013.01.166.
23. Ayers L., Stoewhas A.C., Ferry B. et al. Elevated levels of endothelial cell-derived microparticles following short-term withdrawal of continuous positive airway pressure in patients with obstructive sleep apnea: data from a randomized controlled trial. Respiration. 2013; 85 (6): 478-485. DOI: 10.1159/000342877.
24. Faccenda J.F., Mackay T.W., Boon N.A., Douglas N.J. Randomized placebo-controlled trial of continuous positive airway pressure on blood pressure in the sleep apnea-hypopnea syndrome. Am. J. Respir. Crit. Care Med. 2001; 163 (2): 344-348. DOI: 10.1164/ajrc-cm.163.2.2005037.
25. Pengo M.F., Soranna D., Giontella A. et al. Obstructive sleep apnoea treatment and blood pressure: which phenotypes predict a response? A systematic review and meta-analysis. Eur. Respir. J. 2020; 55 (5): 1901945. DOI: 10.1183/13993003.01945-2019.
26. Iftikhar I.H., Valentine C.W., Bittencourt L.R. et al. Effects of continuous positive airway pressure on blood pressure in patients with resistant hypertension and obstructive sleep apnea: a meta-analysis. J. Hypertens. 2014; 32 (12): 2341-2350. DOI: 10.1097/HJH.0000000000000372.
27. Akashiba T., Minemura H., Yamamoto H. et al. Nasal continuous positive airway pressure changes blood pressure “non-dippers” to “dippers” in patients with obstructive sleep apnea. Sleep. 1999; 22 (7): 849-853. DOI: 10.1093/sleep/22.7.849.
28. Campos-Rodriguez F., Perez-Ronchel J., Grilo-Reina A. et al. Longterm effect of continuous positive airway pressure on BP in patients with hypertension and sleep apnea. Chest. 2007; 132 (6): 1847-1852. DOI: 10.1378/chest.07-1478.
29. Barnes M., Houston D., Worsnop C.J. et al. A randomized controlled trial of continuous positive airway pressure in mild obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2002; 165 (6): 773-780. DOI: 10.1164/ajrccm.165.6.2003166.
30. Robinson G.V., Smith D.M., Langford B.A. et al. Continuous positive airway pressure does not reduce blood pressure in nonsleepy hypertensive OSA patients. Eur. Respir. J. 2006; 27 (6): 1229-1235. DOI: 10.1183/09031936.06.00062805.
31. Haentjens P., Van Meerhaeghe A., Moscariello A. et al. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: evidence from a meta-analysis of placebo-controlled randomized trials. Arch. Intern. Med. 2007; 167 (8): 757-764. DOI: 10.1001/archinte.167.8.757.
32. Pdpin J.L., Tamisier R., Barone-Rochette G. et al. Comparison of continuous positive airway pressure and valsartan in hypertensive patients with sleep apnea. Am. J. Respir. Crit. Care Med. 2010; 182 (7): 954-960. DOI: 10.1164/rccm.200912-1803OC.
33. Sajkov D., Wang T., Saunders N.A. et al. Continuous positive airway pressure treatment improves pulmonary hemodynamics in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2002; 165 (2): 152-158. DOI: 10.1164/ajrccm.165.2.2010092.
34. Arias M.A., Garcia-Rio F., Alonso-Fernandez A. et al. Pulmonary hypertension in obstructive sleep apnoea: effects of continuous positive airway pressure: A randomized, controlled cross-over study. Eur. Heart J. 2006; 27 (9): 1106-1113. DOI: 10.1093/eurheartj/ehi807.
35. Fein A.S., Shvilkin A., Shah D. et al. Treatment of obstructive sleep apnea reduces the risk of atrial fibrillation recurrence after catheter ablation. J. Am. Coll. Cardiol. 2013; 62 (4): 300-305. DOI: 10.1016/j.jacc.2013.03.052.
36. Qureshi W.T., Nasir U.B., Alqalyoobi S. et al. Meta-analysis of continuous positive airway pressure as a therapy of atrial fibrillation in obstructive sleep apnea. Am. J. Cardiol. 2015; 116 (11): 1767-1773. DOI: 10.1016/j.amjcard.2015.08.046.
37. Roche F., Barthelemy J.C., Garet M. et al. Continuous positive airway pressure treatment improves the QT rate dependence adaptation of obstructive sleep apnea patients. Pacing Clin. Electrophysiol. 2005; 28 (8): 819-825. DOI: 10.1111/j.1540-8159.2005.00188.x.
38. Ryan C.M., Usui K., Floras J.S., Bradley T.D. Effect of continuous positive airway pressure on ventricular ectopy in heart failure patients with obstructive sleep apnoea. Thorax. 2005; 60 (9): 781-785. DOI: 10.1136/thx.2005.040972.
39. Marin J.M., Carrizo S.J., Vicente E., Agusti A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005; 365 (9464): 1046-1053. DOI: 10.1016/s0140-6736(05)71141-7.
40. Martinez-Garcia M.A., Campos-Rodriguez F., Catalan-Serra P. et al. Cardiovascular mortality in obstructive sleep apnea in the elderly: role of long-term continuous positive airway pressure treatment. A prospective observational study. Am. J. Respir. Crit. Care Med. 2012; 186 (9): 909-916. DOI: 10.1164/rccm.201203-0448OC.
41. Peker Y., Thunstrom E., Glantz H. et al. Outcomes in coronary artery disease patients with sleepy obstructive sleep apnoea on CPAP. Eur. Respir. J. 2017; 50 (6): 1700749. DOI: 10.1183/13993003.00749-2017.
42. Barbd F., Durdn-Cantolla J., Sdnchez-de-la-Torre M. et al. Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. JAMA. 2012; 307 (20): 2161-2168. DOI: 10.1001/jama.2012.4366.
43. Peker Y., Glantz H., Eulenburg C. et al. Effect ofpositive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea: The RICCADSA randomized controlled trial. Am. J. Respir. Crit. Care Med. 2016; 194 (5): 613-620. DOI: 10.1164/rccm.201601-0088OC.
44. McEvoy R.D., Antic N.A., Heeley E. et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N. Engl. J. Med. 2016; 375 (10): 919-931. DOI: 10.1056/NEJMoa1606599.
45. Peker Y., Strollo P.J. Jr. CPAP did not reduce cardiovascular events in patients with coronary or cerebrovascular disease and moderate to severe obstructive sleep apnoea. Evid. Based Med. 2017; 22 (2): 67-68. DOI: 10.1136/ebmed-2016-110575.
46. Abuzaid A.S., Al Ashry H.S., Elbadawi A. et al. Meta-analysis of cardiovascular outcomes with continuous positive airway pressure therapy in patients with obstructive sleep apnea. Am. J. Cardiol. 2017; 120 (4): 693-699. DOI: 10.1016/j.amjcard.2017.05.042.
47. Yu J., Zhou Z., McEvoy R.D. et al. Association of positive airway pressure with cardiovascular events and death in adults with sleep apnea: a systematic review and meta-analysis. JAMA. 2017; 318 (2): 156-166. DOI: 10.1001/jama.2017.7967.
48. Piepoli M.F., Hoes A.W., Agewall S. et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice: The sixth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European Association for Cardiovascular Prevention and Rehabilitation (EACPR). Eur. Heart J. 2016; 37 (29): 2315-2381. DOI: 10.1093/eurheartj/ehw106.
49. Кардиоваскулярная профилактика 2017: Российские национальные рекомендации. Российский кардиологический журнал. 2018; (6): 7-122. DOI: 10.15829/1560-4071-2018-6-7-122. / [Cardiovascular prevention 2017: National guidelines]. Rossiyskiy kardiologicheskiy zhurnal. 2018; (6): 7-122. DOI: 10.15829/1560-4071-2018-6-7-122 (in Russian).
50. Williams B., Mancia G., Spiering W. et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 2018; 39 (33): 3021-3104. DOI: 10.1093/eurheartj/ehy339.
51. Parati G., Lombardi C., Hedner J. et al. Position paper on the management of patients with obstructive sleep apnea and hypertension: joint recommendations by the European Society of Hypertension, by the European Respiratory Society and by the members of European COST (COoperation in Scientific and Technological research) ACTION B26 on obstructive sleep apnea. J. Hypertens. 2012; 30 (4): 633-646. DOI: 10.1097/HJH.0b013e328350e53b.
52. Whelton P.K., Carey R.M., Aronow W.S. et al. 2017 ACC/AHA/ AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension. 2018; 71 (6): e13—115. DOI: 10.1161/HYP.0000000000000065.
53. Kobalava Z.D., Konradi A.O., Nedogoda S.V. et al. [Arterial hypertension in adults: Clinical guidelines 2020]. Rossiyskiy kardiologicheskiy zhurnal. 2020; 25 (3): 3786. DOI: 10.15829/1560-4071-2020-3-3786 (in Russian).
54. Hindricks G., Potpara T., Dagres N. et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European association of cardio-thoracic surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021; 42 (5): 373-498. DOI: 10.1093/eurheartj/ehaa612.
55. Kusumoto F.M., Schoenfeld M.H., Barrett C. et al. 2018 ACC/AHA/ HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2019; 74 (7): e51-156. DOI: 10.1016/j.jacc.2018.10.044.
56. McLaughlin V.V., Archer S.L., Badesch D.B. et al. ACCF/AHA2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation task force on expert consensus documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation. 2009; 119 (16): 2250-2294. DOI: 10.1161/CIRCULATIONAHA.109.192230.
57. Galife N., Humbert M., Vachiery J.L. et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 2016; 37 (1): 67-119. DOI: 10.1093/eurheartj/ehv317.
58. Powers W.J., Rabinstein A.A., Ackerson T. et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019; 50 (12): e344-418. DOI: 10.1161/STR.0000000000000211.
59. Clinical guidelines on the management of patients with ischemic stroke and transient ischemic attacks]. Moscow; 2017. Available at: https://neuroreab.ru/wp-content/uploads/2020/01/klinicheskie-rekomendaczii-po-vedeniyu-bolnyh-s-ishemicheskim-insultom-i-tranzitornymi-ishemicheskimi-atakami.pdf (in Russian).
60. Drager L.F., McEvoy R.D., Barbe F. et al. Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation. 2017; 136 (19): 1840-1850. DOI: 10.1161/CIRCULA-TIONAHA.117.029400.
Review
For citations:
Agaltsov M.V., Korostovtseva L.S. Obstructive sleep apnea and cardiovascular comorbidity: modern discordance in assessing the effectiveness of CPAP-therapy against the pathogenetic mechanisms and cardiovascular diseases. PULMONOLOGIYA. 2021;31(6):799-807. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-6-799-807