Preview

Пульмонология

Расширенный поиск

Ось кишечник–легкие

https://doi.org/10.18093/0869-0189-2022-3053

Полный текст:

Аннотация

Микробиота кишечника – одна из наиболее многочисленных среди различных биотопов организма. Ее метаболическая активность, а также антигенный состав во многом определяют метаболизм и иммунологический статус макроорганизма, которые, в свою очередь, влияют на активность местного иммунитета тканей легких, предотвращая развитие не только инфекционного процесса экзогенного характера, но и оппортунистических инфекций, а также заболеваний неинфекционной природы.

Целью исследования явилось выявление механизмов взаимодействия микробиоты кишечника с компонентами иммунной системы и микрофлорой легких, а также влияния микроорганизмов кишечника на развитие патологии легких. Представлены данные о влиянии дисбиотических изменений в кишечнике на развитие бронхиальной астмы, муковисцидоза, острого респираторного дистресс-синдрома, хронической обструктивной болезни легких, респираторных вирусных инфекций. Рассмотрена роль микробиоты кишечника в формировании иммунологической резистентности к инфицированию Mycobacterium tuberculosis и в поддержании антионкогенных процессов в тканях легких.

Заключение. Микробиота кишечника оказывает большой вклад в развитие респираторной патологии через иммунологические и метаболические механизмы. Подробное изучение данных механизмов позволит расширить представление о патогенезе заболеваний легких и найти точки приложения для фармакотерапии данной категории патологий.

Об авторах

В. С. Беляев
Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный медицинский университет» Министерства здравоохранения Российской Федерации
Россия

Беляев Всеволод Станиславович – студент V курса стоматологического факультета

170100, Тверь, ул. Советская, 4


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов.



В. М. Червинец
Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный медицинский университет» Министерства здравоохранения Российской Федерации
Россия

Червинец Вячеслав Михайлович – д. м. н., профессор, заведующий кафедрой микробиологии и вирусологии с курсом иммунологии

170100, Тверь, ул. Советская, 4


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов.



Ю. В. Червинец
Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный медицинский университет» Министерства здравоохранения Российской Федерации
Россия

Червинец Юлия Вячеславовна – д. м. н., профессор кафедры микробиологии и вирусологии с курсом иммунологии

170100, Тверь, ул. Советская, 4


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов.



Список литературы

1. Budden K., Gellatly S., Wood D. et al. Emerging pathogenic links between microbiota and the gut–lung axis. Nat. Rev. Microbiol. 2017; 15 (1): 55–63. DOI: 10.1038/nrmicro.2016.142.

2. Dang A.T., Marsland B.J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 2019; 12 (4): 843–850. DOI: 10.1038/s41385-019-0160-6.

3. Чаплин А.В., Ребриков Д.В., Болдырева М.Н. Микробиом человека. Вестник Российского государственного медицинского университета. 2017; (2): 5–13. DOI: 10.24075/brsmu.2017-02-01.

4. Bingula R., Filaire M., Radosevic-Robin N. et al. Desired turbulence? Gut–lung axis, immunity, and lung cancer. J. Oncol. 2017; 2017: 5035371. DOI: 10.1155/2017/5035371.

5. Sommariva M., Le Noci V., Bianchi F. et al. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell. Mol. Life Sci. 2020; 77 (14): 2739–2749. DOI: 10.1007/s00018-020-03452-8.

6. Invernizzi R., Lloyd C.M., Molyneaux P.L. Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology. 2020; 160 (2): 171–182. DOI: 10.1111/imm.13195.

7. Huffnagle G.B., Dickson R.P., Lukacs N.W. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol. 2017; 10 (2): 299–306. DOI: 10.1038/mi.2016.108.

8. Zheng D., Liwinski T., Elinav E. Interaction between microbiota and immunity in health and disease. Cell. Res. 2020; 30 (6): 492–506. DOI: 10.1038/s41422-020-0332-7.

9. Gupta N., Kumar R., Agrawal B. New players in immunity to tuberculosis: the host microbiome, lung epithelium, and innate immune cells. Front. Immunol. 2018; 9: 709. DOI: 10.3389/fimmu.2018.00709.

10. Aktas B., Aslim B. Gut–lung axis and dysbiosis in COVID-19. Turk. J. Biol. 2020; 44 (3): 265–272. DOI: 10.3906/biy-2005-102.

11. Министерство здравоохранения РФ. Временные методические рекомендации: профилактика, диагностика и лечение новой коронавирусной инфекции (COVID 19). Версия 12 (21.09.2021). Доступно на: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/075/original/%D0%92%D0%9C%D0%A0_COVID-19_V12.pdf.

12. Ahlawat S., Asha, Sharma K.K. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. Virus Res. 2020; 286: 198103. DOI: 10.1016/j.virusres.2020.198103.

13. Viana S.D., Nunes S., Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities – role of gut microbiota dysbiosis. Ageing Res. Rev. 2020; 62: 101–123. DOI: 10.1016/j.arr.2020.101123.

14. Deriu E., Boxx G.M., He X. et al. Influenza virus affects intestinal microbiota and secondary Salmonella infection in the gut through type I interferons. PLoS Pathog. 2016; 12 (5): e1005572. DOI: 10.1371/journal.ppat.1005572.

15. Groves H.T., Cuthbertson L., James P. et al. Respiratory disease following viral lung infection alters the murine gut microbiota. Front. Immunol. 2018; 9: 182. DOI: 10.3389/fimmu.2018.00182.

16. Mukherjee S., Hanidziar D. More of the gut in the lung: how two microbiomes meet in ARDS. Yale J. Biol. Med. 2018; 91 (2): 143–149.

17. Dickson R.P., Singer B.H., Newstead M.W. et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 2016; 1 (10): 16113. DOI: 10.1038/nmicrobiol.2016.113.

18. Dumas A., Corral D., Colom A. et al. The host microbiota contributes to early protection against lung colonization by Mycobacterium tuberculosis. Front. Immunol. 2018; 9: 2656. DOI: 10.3389/fimmu.2018.02656.

19. Negi Sh., Pahari S., Bashir H., Agrewala J.N. Gut microbiota regulates mincle mediated activation of lung dendritic cells to protect against Mycobacterium tuberculosis. Front. Immunol. 2019; 10: 1142. DOI: 10.3389/fimmu.2019.01142.

20. Khan N., Vidyarthi A., Nadeem S. et al. Alteration in the gut microbiota provokes susceptibility to tuberculosis. Front. Immunol. 2016; 7: 529. DOI: 10.3389/fimmu.2016.00529.

21. Khan N., Mendonca L., Dhariwal A. et al. Intestinal dysbiosis compromises alveolar macrophage immunity to Mycobacterium tuberculosis. Mucosal Immunol. 2019; 12 (3): 772–783. DOI: 10.1038/s41385-019-0147-3.

22. Negatu D.A., Gengenbacher M., Dartois V., Dick T. Indole propionic acid, an unusual antibiotic produced by the gut microbiota, with anti-inflammatory and antioxidant properties. Front. Microbiol. 2020; 11: 575586. DOI: 10.3389/fmicb.2020.575586.

23. Negatu D.A., Yamada Y., Xi Y. et al. Gut microbiota metabolite indole propionic acid targets tryptophan biosynthesis in Mycobacterium tuberculosis. mBio. 2019; 10 (2): e02781-18. DOI: 10.1128/mBio.02781-18.

24. Li W., Zhu Y., Liao Q. et al. Characterization of gut microbiota in children with pulmonary tuberculosis. BMC Pediatr. 2019; 19 (1): 445. DOI: 10.1186/s12887-019-1782-2.

25. Lee S.H., Yun Y., Kim S.J. et al. Association between cigarette smoking status and composition of gut microbiota: population-based cross-sectional study. J. Clin. Med. 2018; 7 (9): 282. DOI: 10.3390/jcm7090282.

26. Zhang D., Li S., Wang N. et al. The cross-talk between gut microbiota and lungs in common lung diseases. Front. Microbiol. 2020; 11: 301. DOI: 10.3389/fmicb.2020.00301.

27. Bowerman K.L., Rehman S.F., Vaughan A. et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat. Commun. 2020; 11 (1): 58–86. DOI: 10.1038/s41467-020-19701-0.

28. Chiu Y.C., Lee S.W., Liu C.W. et al. Comprehensive profiling of the gut microbiota in patients with chronic obstructive pulmonary disease of varying severity. PLoS One. 2021; 16 (4): e0249944. DOI: 10.1371/journal.pone.0249944.

29. Shukla S.D., Budden K.F., Neal R., Hansbro P.M. Microbiome effects on immunity, health and disease in the lung. Clin. Transl. Immunology. 2017; 6 (3): e133. DOI: 10.1038/cti.2017.6.

30. Frati F., Salvatori C., Incorvaia C. et al. The role of the microbiome in asthma: the gut–lung axis. Int. J. Mol. Sci. 2018; 20 (1): 123. DOI: 10.3390/ijms20010123.

31. Ver Heul A., Planer J., Kau A.L. The human microbiota and asthma. Clin. Rev. Allergy Immunol. 2019; 57 (3): 350–363. DOI: 10.1007/s12016-018-8719-7.

32. Hufnagl K., Pali-Schöll I., Roth-Walter F., Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin. Immunopathol. 2020; 42 (1): 75–93. DOI: 10.1007/s00281-019-00775-y.

33. Enaud R., Prevel R., Ciarlo E. et al. The gut–lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front. Cell. Infect. Microbiol. 2020; 10: 9. DOI: 10.3389/fcimb.2020.00009.

34. Chiu Y.C., Chan Y.L., Tsai M.H. et al. Gut microbial dysbiosis is associated with allergen-specific IgE responses in young children with airway allergies. World Allergy Organ. J. 2019; 12 (3): 100021. DOI: 10.1016/j.waojou.2019.100021.

35. Loverdos K., Bellos G., Kokolatou L. et al. Lung microbiome in asthma: current perspectives. J. Clin. Med. 2019; 8 (11): 1967. DOI: 10.3390/jcm8111967.

36. Cait A., Hughes M., Antignano F. et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol. 2018; 11 (3): 785–795. DOI: 10.1038/mi.2017.75.

37. Gentzsch M., Mall M.A. Ion channel modulators in cystic fibrosis. Chest. 2018; 154 (2): 383–393. DOI: 10.1016/j.chest.2018.04.036.

38. Cabrini G., Rimessi A., Borgatti M. et al. Role of cystic fibrosis bronchial epithelium in neutrophil chemotaxis. Front. Immunol. 2020; 11: 1438. DOI: 10.3389/fimmu.2020.01438.

39. Hwang T.C., Yeh J.T., Zhang J. et al. Structural mechanisms of CFTR function and dysfunction. J. Gen. Physiol. 2018; 150 (4): 539–570. DOI: 10.1085/jgp.201711946.

40. Hoen A.G., Li J., Moulton L.A. et al. Associations between gut microbial colonization in early life and respiratory outcomes in cystic fibrosis. J. Pediatr. 2015; 167 (1): 138–47.e473. DOI: 10.1016/j.jpeds.2015.02.049.

41. Ranucci G., Buccigrossi V., de Freitas M.B. et al. Early-life intes - tine microbiota and lung health in children. J. Immunol. Res. 2017; 8450496. DOI: 10.1155/2017/8450496.

42. de Freitas M.B., Moreira E.A.M., Tomio C. et al. Altered intestinal microbiota composition, antibiotic therapy and intestinal inflammation in children and adolescents with cystic fibrosis. PLoS One. 2018; 13 (6): e0198457. DOI: 10.1371/journal.pone.0198457.

43. Burke D.G., Fouhy F., Harrison M.J. et al. The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol. 2017; 17 (1): 58. DOI: 10.1186/s12866-017-0968-8.

44. Тлюстангелова Р.К., Долинный С.В., Пшеничная Н.Ю. Роль короткоцепочечных жирных кислот в патогенезе острых кишечных инфекций и постинфекционных синдромов. Русский медицинский журнал. 2019; 27 (10): 31–35. Доступно на: https://www.rusmedreview.com/articles/infektsiya/Roly_korotkocepochechnyh_ghirnyh_kislot_v_patogeneze_ostryh_kishechnyh_infekciy_i_postinfekcionnyh_sindromov/

45. Soldavini J., Kaunitz J.D. Pathobiology and potential therapeutic value of intestinal short-chain fatty acids in gut inflammation and obesity. Dig. Dis. Sci. 2013; 58 (10): 2756–2766. DOI: 10.1007/s10620-013-2744-4.

46. Kobayashi M., Mikami D., Kimura H. et al. Short-chain fatty acids, GPR41 and GPR43 ligands, inhibit TNF-α-induced MCP-1 expression by modulating p38 and JNK signaling pathways in human renal cortical epithelial cells. Biochem. Biophys. Res. Commun. 2017; 486 (2): 499–505. DOI: 10.1016/j.bbrc.2017.03.071.

47. Sun M., Wu W., Liu Z., Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 2017; 52 (1): 1–8. DOI: 10.1007/s00535-016-1242-9.

48. Galvão I., Tavares L.P., Corrêa R.O. et al. The metabolic sensor GPR43 receptor plays a role in the control of Klebsiella pneumoniae infection in the lung. Front. Immunol. 2018; 9: 142. DOI: 10.3389/fimmu.2018.00142.

49. Chen J., Zhao K.-N., Vitetta L. Effects of intestinal microbial-elaborated butyrate on oncogenic signaling pathways. Nutrients. 2019; 11 (5): 1026. DOI: 10.3390/nu11051026.

50. Gui Q., Li H., Wang A. et al. The association between gut butyrateproducing bacteria and non-small-cell lung cancer. J. Clin. Lab. Anal. 2020; 34 (8): e23318. DOI: 10.1002/jcla.23318.

51. Zhuang H., Cheng L., Wang Y. et al. Dysbiosis of the gut microbiome in lung cancer. Front. Cell. Infect. Microbiol. 2019; 9: 112. DOI: 10.3389/fcimb.2019.00112.

52. Liu F., Li J., Guan Y. et al. Dysbiosis of the gut microbiome is associated with tumor biomarkers in lung cancer. Int. J. Biol. Sci. 2019; 15 (11): 2381–2392. DOI: 10.7150/ijbs.35980.


Дополнительные файлы

Рецензия

Для цитирования:


Беляев В.С., Червинец В.М., Червинец Ю.В. Ось кишечник–легкие. Пульмонология. 2022;. https://doi.org/10.18093/0869-0189-2022-3053

For citation:


Belyaev V.S., Chervinets V.M., Chervinets Yu.V. Gut–lung axis. PULMONOLOGIYA. 2022;. (In Russ.) https://doi.org/10.18093/0869-0189-2022-3053

Просмотров: 441


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)