Development of fibrosis and impairment of lung function in patients with a new coronavirus disease
https://doi.org/10.18093/0869-0189-2021-31-5-653-662
Abstract
The aim: review scientific research to find out whether the new coronavirus infection (NCI) causes fibrotic changes in the lungs and, if any, how long they persist and whether functional disorders of the respiratory system accompany them. Disruption of the functional state of the lungs in patients with severe novel coronavirus disease (COVID-19) is still seen 6 months after completion of inpatient treatment. High-resolution computed tomography (HRCT) demonstrates persistent pathological changes in the lungs, some of which are fibrosis-like. Pathomorphological features of the COVID-19 course, as well as the ability of the virus to activate connective tissue growth factor (CTGF) and enhance the signaling of transforming growth factor-beta (TGF-β), can contribute to lung tissue fibrosis. Increased titers of antinuclear autoantibodies and specific autoantibodies indirectly reveal dysregulation of the immune response leading to the progression of organizing pneumonia and fibrotic changes in the lung tissue. These increased titers can also indicate the need to prescribe immunosuppressive and antifibrotic drugs. Researchers are considering the possibility of including antifibrotic drugs in combination therapy for severe COVID-19 in the early stages of treatment in patients with risk factors for developing pulmonary fibrosis. However, further monitoring and determination of the role of antifibrotic drugs are required. Sometimes patients with COVID-19 develop severe, irreversible fibrotic lung disease, and lung transplantation is the only treatment option.
Conclusion. There is no unequivocal opinion among researchers concerning the clinical significance and further prognosis of COVID-19 so far, which is a reason for further studies.
About the Authors
Igor´ V. LeshchenkoRussian Federation
Igor V. Leshсhenko, Doctor of Medicine, Professor, Department of Phthisiology, Pulmonology and Thoracic Surgery; Chief Researcher;
ul. Repina 3, Ekaterinburg, 620028;
ul. 22-go Parts’ezda 50, Ekaterinburg, 620039;
ul. Zavodskaya 29, Ekaterinburg, 620109
tel.: (343) 246-44-75
Competing Interests:
The authors declare no conflict of interest
Tatyana V. Glushkova
Russian Federation
Tatyana V. Glushkova, pulmonologist
ul. 22-go Parts’ezda 50, Ekaterinburg, 620039
tel.: (343) 333-44-33
Competing Interests:
The authors declare no conflict of interest
References
1. World Health Organization. WHO Coronavirus (СOVID-19) Dashboard. Available at: https://covid19.who.int
2. Samsonova M.V., Chernyaev A.L., Omarova Zh.R. et al. [Features of pathological anatomy of lungs at COVID-19]. Pul’monologiya. 2020; 30 (5): 519–532. DOI: 10.18093/0869-0189-2020-30-5-519-532 (in Russian).
3. Xu Z., Shi L., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020; 8 (4): 420–422. DOI: 10.1016/S2213-2600(20)30076-X.
4. Winn W.C., Walker D.H. (eds). Viral Infections. In: Dail D.H., Hammar S.P. Pulmonary Pathology. New York: Springer, 1994: 429–464. DOI: 10.1007/978-1-4757-3935-0_12.
5. Chernyaev A.L., Samsonova M.V. [The etiology, pathogenesis, and pathological anatomy of diffuse alveolar lesion]. Obshchaya reanimatologiya. 2005; 1 (5): 13–16. DOI: 10.15360/1813-9779-2005-5-13-16 (in Russian).
6. Zhao X., Nicholls J.M., Chen Y.G. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-beta signaling. J. Biol. Chem. 2008; 283 (6): 3272–3280. DOI: 10.1074/jbc.m708033200.
7. Kannan S., Shaik Syed Ali P., Sheeza A., K. Hemalatha. COVID-19 (Novel Coronavirus 2019) – recent trends. Eur. Rev. Med. Pharmacol. Sci. 2020; 24 (4): 2006–2011. DOI: 10.26355/eurrev_202002_20378.
8. Xu J., Xu X., Jiang L. et al. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir. Res. 2020; 21 (1): 182. DOI: 10.1186/s12931-020-01445-6.
9. Gagiannis D., Steinestel J., Hackenbroch C. et al. Clinical, serological, and histopathological similarities between severe COVID-19 and acute exacerbation of connective tissue disease – associated interstitial lung disease (CTD-ILD). Front. Immunol. 2020; 11: 587517. DOI: 10.3389/fimmu.2020.587517.
10. Katzenstein A.L., Bloor C.M., Leibow A.A. Diffuse alveolar damage – the role of oxygen, shock, and related factors: A review. Am. J. Pathol. 1976; 85 (1): 209–228.
11. Pratt P.C. Pulmonary capillary proliferation induced by oxygen inhalation. Am. J. Pathol. 1958; 34 (6): 1033–1049.
12. Nash G., Blennerhassett J.B., Pontoppidan H. Pulmonary lesions associated with oxygen therapy and artificial ventilation. N. Engl. J. Med. 1967; 276 (7): 368–374. DOI: 10.1056/nejm196702162760702.
13. Hanidziar D., Robson S.C. Hyperoxia and modulation of pulmonary vascular and immune responses in COVID-19. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021; 320 (1): L12–16. DOI: 10.1152/ajplung.00304.2020.
14. Konopka K.E., Nguyen T., Jentzen J.M. et al. Diffuse alveolar damage (DAD) resulting from coronavirus disease 2019 infection is morphologically indistinguishable from other causes of DAD. Histopathology. 2020; 77 (4): 570–578. DOI: 10.1111/his.14180.
15. Mo, X., Jian W., Su Z. et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Resp. J. 2020; 55 (6): 2001217. DOI: 10.1183/13993003.01217-2020.
16. Qin W., Chen S., Zhang Y. et al. Diffusion capacity abnormalities for carbon monoxide in patients with COVID-19 at 3-month follow-up. Eur. Respir. J. 2021; 58 (1): 2003677. DOI: 10.1183/13993003.03677-2020.
17. van den Borst B., Peters J.B., Brink M. et al. Comprehensive health assessment 3 months after recovery from acute coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. 2020; 73 (5): е1089–1098. DOI: 10.1093/cid/ciaa1750.
18. Ekbom E., Frithiof R., Emilsson Öi. et al. Impaired diffusing capacity for carbon monoxide is common in critically ill Covid-19 patients at four months post-discharge. Respir. Med. 2021; 182: 106394. DOI: 10.1016/j.rmed.2021.106394.
19. Barisione G., Brusasco V. Lung diffusing capacity for nitric oxide and carbon monoxide following mild-to-severe COVID-19. Physiol. Rep. 2021; 9 (4): e14748. DOI: 10.14814/phy2.14748.
20. Huang W., Wu Q., Chen Z. et al. The potential indicators for pulmonary fibrosis in survivors of severe COVID-19. J. Infect. 2021; 82 (2): e5–7. DOI: 10.1016/j.jinf.2020.09.027.
21. Wei J., Yang, H., Lei P. et al. Analysis of thin-section CT in patients with coronavirus disease (COVID-19) after hospital discharge. J. Xray Sci. Technol. 2020; 28 (3): 383–389. DOI: 10.3233/xst-200685.
22. McGroder C.F., Zhang D., Choudhury M.A. et al. Pulmonary fibrosis 4 months after COVID-19 is associated with severity of illness and blood leucocyte telomere length. Thorax. 2021 [Preprint. Posted: April 29, 2021]. DOI: 10.1136/thoraxjnl-2021-217031.
23. Cronkhite J.T., Xing C., Raghu G. et al. Telomere shortening in familial and sporadic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2008; 178 (7): 729–737. DOI: 10.1164/rccm.200804-550OC.
24. Raghu G., Wilson K.C. COVID-19 interstitial pneumonia: monitoring the clinical course in survivors. Lancet Respir. Med. 2020; 8 (9): 839–842. DOI: 10.1016/S2213-2600(20)30349-0.
25. Huang C., Huang L., Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021; 397 (10270): 220–232. DOI: 10.1016/s0140-6736(20)32656-8.
26. Bharat A., Machuca T.N., Querrey M. et al. Early outcomes after lung transplantation for severe COVID-19: a series of the first consecutive cases from four countries. Lancet Respir. Med. 2021; 9 (5): 487–497. DOI: 10.1016/s2213-2600(21)00077-1.
27. Chen X.J., Li K., Xu L. et al. Novel insight from the first lung transplant of a COVID-19 patient. Eur. J. Clin. Invest. 2021; 51 (1): e13443. DOI: 10.1111/eci.13443.
28. Bühling F., Röcken C., Brasch F. et al. Pivotal role of cathepsin K in lung fibrosis. Am. J. Pathol. 2004; 164 (6): 2203–2216. DOI: 10.1016/S0002-9440(10)63777-7.
29. Bharat A., Querrey M., Markov N.S. et al. Lung transplantation for pulmonary fibrosis secondary to severe COVID-19. MedRxiv. 2020; 10.26.20218636 [Preprint. Posted: October 27, 2020]. DOI: 10.1101/2020.10.26.20218636.
30. Croci G.A., Vaira V., Trabattoni D. et al. Emergency lung transplantation after COVID-19: immunopathological insights on two affected patients. Gells. 2021; 10 (3): 611. DOI: 10.3390/cells10030611.
31. Zhan X., Liu B., Tong Z.H. [Postinflammatroy pulmonary fibrosis of COVID-19: the current status and perspective]. Zhonghua Jie He He Hu Xi Za Zhi. 2020; 43 (9): 728–732. DOI: 10.3760/cma.j.cn112147-20200317-00359 (in Chinese).
32. Chinese Research Hospital Association, Respiratory Council [Expert recommendations for the diagnosis and treatment of interstitial lung disease caused by novel coronavirus pneumonia]. Zhonghua Jie He He Hu Xi Za Zhi. 2020; 43 (10): 827–833. DOI: 10.3760/cma.j.cn112147-20200326-00419 (in Chinese).
33. Orlova G. P., Surkova E. A., Lapin S. V. [Extrinsic interstitial lung disease activity markers]. Pulmonologiya. 2016; 26 (2):180–185. DOI: 10.18093/0869-0189-2016-26-2-180-185 (in Russian).
34. Hesselstrand R., Wildt M., Bozovic G. et al. Biomarkers from bronchoalveolar lavage fluid in systemic sclerosis patients with interstitial lung disease relate to severity of lung fibrosis. Respir. Med. 2013; 107 (7): 1079–1086. DOI: 10.1016/j.rmed.2013.03.015.
35. Xu L., Yan D.R., Zhu S.L. et al. KL-6 regulated the expression of HGF, collagen and myofibroblast differentiation. Eur. Rev. Med. Pharmacol. Sci. 2013; 17 (22): 3073–3077. Available at: https://www.europeanreview.org/article/5982
36. Sato H., Callister M.E., Mumby S. et al. KL-6 levels are elevated in plasma from patients with acute respiratory distress syndrome. Eur. Respir. J. 2004; 23 (1): 142–145. DOI: 10.1183/09031936.03.00070303.
37. Eisner, M.D., Parsons P., Matthay M.A. et al. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax. 2003; 58 (11): 983–988. DOI: 10.1136/thorax.58.11.983.
38. Jabaudon M., Blondonnet R., Roszyk L. et al. Soluble receptor for advanced glycation end-products predicts impaired alveolar fluid clearance in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2015; 192 (2):191–199. DOI: 10.1164/rccm.201501-0020OC.
39. Combet M., Pavot A., Savale L. et al. Rapid onset honeycombing fibrosis in spontaneously breathing patient with Covid-19. Eur. Respir. J. 2020; 56 (2): 2001808. DOI: 10.1183/13993003.01808-2020.
40. George P.M., Wells A.U., Jenkins R.G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir. Med. 2020; 8 (8): 807–815. DOI: 10.1016/S2213-2600(20)30225-3.
41. Hamidi S.H., Kadamboor Veethil S., Hamidi S.H. Role of pirfenidone in TGF-β pathways and other inflammatory pathways in acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection: a theoretical perspective. Pharmacol. Rep. 2021; 73 (3): 712–727. DOI: 10.1007/s43440-021-00255-x.
42. Thomas M., Price O.J., Hull J.H. Pulmonary function and COVID-19. Curr. Opin. Physiol. 2021; 21: 29–35. DOI: 10.1016/j.cophys.2021.03.005.
43. McDonald L.T. Healing after COVID-19: are survivors at risk for pulmonary fibrosis? Am. J. Physiol. Lung Cell. Mol. Physiol. 2021; 320 (2): L257–265. DOI: 10.1152/ajplung.00238.2020.
44.
Review
For citations:
Leshchenko I.V., Glushkova T.V. Development of fibrosis and impairment of lung function in patients with a new coronavirus disease. PULMONOLOGIYA. 2021;31(5):653-662. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-5-653-662