1. Ahmed H., Patel K., Greenwood D.C. et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU: A systematic review and meta-analysis. J. Rehabil. Med. 2020; 52 (5): jrm00063. https://doi.org/10.2340/16501977-2694.
2. Zhang P., Li J., Liu H. et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study. Bone Res. 2020; 8: 8. https://doi.org/10.1038/s41413-020-0084-5.
3. Ngai J.C., Ko F.W., Ng S.S. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology. 2010; 15 (3): 543-550. https://doi.org/10.1111/j.1440-1843.2010.01720.x.
4. Nalbandian A., Sehgal K., Gupta A. et al. Post-acute COVID-19 syndrome. Nat. Med. 2021; 27 (4): 601-615 https://doi.org/10.1038/s41591-021-01283-z.
5. Torres-Castro R., Vasconcello-Castillo L., Alsina-Restoy X. et al. Respiratory function in patients post-infection by COVID-19: a systematic review and meta-analysis. Pulmonology. 2021; 27 (4): 328-337. https://doi.org/10.1016/j.pulmoe.2020.10.013.
6. Sonnweber T., Sahanic S., Pizzini A. et al. Cardiopulmonary recovery after COVID-19: an observational prospective multicentre trial. Eur. Respir. J. 2021; 57 (4): 2003481. https://doi.org/10.1183/13993003.03481-2020.
7. Chuchalin A.G., Aisanov Z.R., Chikina S.Yu. et al. [Federal guidelines of Russian Respiratory Society on spirometry]. Pul’monologiya. 2014; (6): 11-24. https://doi.org/10.18093/0869-0189-2014-0-6-11-24 (in Russian).
8. Graham B.L., Steenbruggen I., Miller M.R. et al. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement. Am. J. Respir. Crit. Care Med. 2019; 200 (8): e70-88. https://doi.org/10.1164/rccm.201908-1590ST.
9. Wanger J., Clausen J.L., Coates A. et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005; 26 (3): 511-522. https://doi.org/10.1183/09031936.05.00035005.
10. Smith H.J., Reinhold P., Goldman M.D. Forced oscillation technique and impulse oscillometry. Eur. Respir. Mon. 2005; 31: 72-105. https://doi.org/10.1183/1025448x.00031005.
11. Graham B.L., Brusasco V., Burgos F. et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017; 49 (1): 1600016. https://doi.org/10.1183/13993003.00016-2016.
12. Russian Respiratory Society. [Recommendations of the Russian Respiratory Society for functional studies of the respiratory system during the COVID-19 pandemic. Version 1.1. May 19, 2020]. Available at: https://spulmo.ru/upload/rekomendacii_rro_fvd_COVID_19_rev1_1_01062020.pdf (in Russian).
13. Quanjer P.H., Tammeling G.J., Cotes J.E. et al. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official statement of the European Respiratory Society. Eur. Respir. J. 1993; 6 (Suppl. 16): 5-40. Available at: https://erj.ersjournals.com/content/erj/6/Suppl_16/5.full.pdf
14. Savushkina O.I., Chernyak A.V., Kryukov E.V. et al. [Pulmonary function after COVID-19 in early convalescence phase]. Meditsinskiy alfavit. 2020; (25): 7-12. https://doi.org/10.33667/2078-5631-2020-25-7-12 (in Russian).
15. Kryukov E.V., Savushkina O.I., Malashenko M.M. et al. [Influence of complex medical rehabilitation on pulmonary function and quality of life in patients after COVID-19]. Byulleten’ fiziologii i patologii dykhaniya. 2020; (78): 84-91. https://doi.org/10.36604/1998-5029-2020-78-84-91 (in Russian).
16. Frija-Masson J., Debray M.P., Gilbert M. et al. Functional characteristics of patients with SARS-CoV-2 pneumonia at 30 days post-infection. Eur. Respir. J. 2020; 56 (2): 2001754. https://doi.org/10.1183/13993003.01754-2020.
17. Patel B.V., Arachchillage D.J., Ridge C.A. et al. Pulmonary angiopathy in severe COVID-19: physiologic, imaging, and hematologic observations. Am. J. Respir. Crit. Care Med. 2020; 202 (5): 690-699. https://doi.org/10.1164/rccm.202004.
18. Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 2020; 383 (2): 120-128. https://doi.org/10.1056/NEJMoa2015432.
19. Lins M., Vandevenne J., Thillai M. et al. Assessment of small pulmonary blood vessels in COVID-19 patients using HRCT. Acad. Radiol. 2020; 27 (10): 1449-1455. https://doi.org/10.1016/j.acra.2020.07.019.
20. Zhao Y.M., Shang Y.M., Song W.B. et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine. 2020; 25: 100463. https://doi.org/10.1016/j.eclinm.2020.100463.
21. Kameneva M.Yu., Tishkov A.V., Trofimov V.I. [Unresolved issues of diagnosis of restrictive ventilation disorders]. Pul’monologiya. 2015; 25 (3): 363-367. https://doi.org/10.18093/0869-0189-2015-25-3-363-367 (in Russian).
22. Galant S.P., Komarow H.D., Shin H.W. et al. The case for impulse oscillometry in the management of asthma in children and adults. Ann. Allergy Asthma Immunol. 2017; 118 (6): 664-671. https://doi.org/10.1016/j.anai.2017.04.009.
23. Lipworth V.J., Jabbal S. What can we learn about COPD from impulse oscillometry? Respir. Med. 2018; 139: 106-109. https://doi.org/10.1016/j.rmed.2018.05.004.
24. Kryukov E.V., Savushkina O.I., Chernyak A.V., Kulagina I.Ts. [Diagnosing ventilation inhomogeneity after COVID-19 by multiple-breath nitrogen washout test]. Pul’monologiya. 2021; 31 (1): 30-36. https://doi.org/10.18093/0869-0189-2021-31-1-30-36 (in Russian).
25. Guler S.A., Ebner L., Aubru-Beigelman C. et al. Pulmonary function and radiological features four months after COVID-19: first results from the national prospective observational Swiss COVID-19 lung study. Eur. Respir. J. 2021; 57 (4): 2003690. https://doi.org/10.1183/13993003.03690-2020.