Post-covid condition in adults and children
https://doi.org/10.18093/0869-0189-2021-31-5-562-570
Abstract
Despite the impressive progress in diagnosis and management of acute COVID-19, data regarding the consequences of this infection are just emerging. The World Health Organization has proposed the term post-COVID condition (PCC) to describe the wide range of sequelae of acute COVID-19. With more than 200 million confirmed cases of COVID-19, PCC may develop into a major problem for many years to come for the millions of COVID-19 survivors worldwide. Few studies were conducted in primary care, and very few studies have focused exclusively on children and adolescents.
Objective. To review existing data on PCC. Analysis of manuscripts published in peer-reviewed journals and clinical protocols. PCC is characterized by a wide range of systemic, cardio-pulmonary, gastrointestinal, neurological, and psychosocial symptoms.
Conclusion. Although PCC prevalence is difficult to estimate due to methodological limitations of the existing studies, there is no doubt that this problem is a significant healthcare burden. There is a need for further observational and interventional studies to establish optimal PCC prevention and management strategies.
About the Authors
Dina V. BaimukhambetovaRussian Federation
Dina V. Baimukhambetova, student
ul. Trubetskaya 8, build. 2, Moscow, 119991
tel.: (499) 256-57-72
Competing Interests:
The authors declare no conflicts of interest
Anastasia O. Gorina
Russian Federation
Anastasia O. Gorina, student
ul. Trubetskaya 8, build. 2, Moscow, 119991
tel.: (499) 256-57-72
Competing Interests:
The authors declare no conflicts of interest
Mikhail A. Rumyantsev
Russian Federation
Mikhail A. Rumyantsev, student
ul. Trubetskaya 8, build. 2, Moscow, 119991
tel.: (499) 256-57-72
Competing Interests:
The authors declare no conflicts of interest
Anastasia A. Shikhaleva
Russian Federation
Anastasia A. Shikhaleva, student
ul. Trubetskaya 8, build. 2, Moscow, 119991
tel.: (499) 256-57-72
Competing Interests:
The authors declare no conflicts of interest
Yasmin A. El-Taravi
Russian Federation
Yasmin A. El-Taravi, student
ul. Trubetskaya 8, build. 2, Moscow, 119991
tel.: (499) 256-57-72
Competing Interests:
The authors declare no conflicts of interest
Elena D. Bondarenko
Russian Federation
Elena D. Bondarenko, Assistant, Department of Pediatrics and Paediatric Infectious Diseases, N.F.Filatov Clinical Institute of Children’s Health
ul. Trubetskaya 8, build. 2, Moscow, 119991
tel.: (499) 256-57-72
Competing Interests:
The authors declare no conflicts of interest
Valentina A. Kapustina
Russian Federation
Valentina A. Kapustina, Candidate of Medicine, Associate Professor, Department of Faculty Therapy No.1, N.V.Sklifosovsky Institute of Clinical Medicine
ul. Trubetskaya 8, build. 2, Moscow, 119991
tel.: (499) 256-57-72
Competing Interests:
The authors declare no conflicts of interest
Daniil B. Munblit
Russian Federation
Daniil B. Munblit, MD, PhD, Professor, Department of Pediatrics and
Paediatric Infectious Diseases, N.F.Filatov Clinical Institute of Children’s Health
ul. Trubetskaya 8, build. 2, Moscow, 119991
tel.: (499) 256-57-72
Competing Interests:
The authors declare no conflicts of interest
References
1. World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available at: https://covid19.who.int/?gclid=EAIaIQobChMIxs-CobqP8wIVo0aRBR3NvAqUEAAYASABEgKQ9_D_BwE
2. Kobak D. Excess mortality reveals Covid’s true toll in Russia. Signif. (Oxf). 2021; 18 (1): 16–19. DOI: 10.1111/1740-9713.01486.
3. RECOVERY Collaborative Group: Horby P., Lim W.S., Emberson J.R. et al. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 2021; 384 (8): 693–704. DOI: 10.1056/NEJMoa2021436.
4. RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021; 397 (10285): 1637–1645. DOI: 10.1016/S0140-6736(21)00676-0.
5. Wise J. Long COVID: WHO calls on countries to offer patients more rehabilitation. BMJ. 2021; 372: n405. DOI: 10.1136/bmj.n405.
6. Centers for Disease Control and Prevention (CDC). COVID-19. Your Health. Available at: https://www.cdc.gov/coronavirus/2019-ncov/your-health/index.html [Assessed: August 10, 2021].
7. Garg P., Arora U., Kumar A., Wig N. The “post-COVID” syndrome: How deep is the damage? J. Med. Virol. 2021; 2 (93): 673–674. DOI: 10.1002/jmv.26465.
8. COVID-19 rapid guideline: managing the long-term effects of COVID-19: NICE Guideline No.188. London: National Institute for Health and Care Excellence; 2020. Available at: https://www.nice.org.uk/guidance/ng188/resources/covid19-rapid-guideline-managingthe-longterm-effects-of-covid19-pdf-66142028400325
9. Michelen M., Manoharan L., Elkheir N. et al. Characterising longterm Covid-19: a rapid living systematic review. medRxiv. 2020 [Preprint. Posted: August 12, 2020]. DOI: 10.1101/2020.12.08.20246025.
10. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323 (13): 1239–1242. DOI: 10.1001/jama.2020.2648.
11. Garrigues E., Janvier P., Kherabi Y. et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 2020; 81 (6): e4–6. DOI: 10.1016/j.jinf.2020.08.029.
12. Chopra V., Flanders S. A., O’Malley M. et al. Sixty-day outcomes among patients hospitalized with COVID-19. Ann. Intern. Med. 2021; 174 (4): 576–578. DOI: 10.7326/M20-5661.
13. Halpin S.J., McIvor C., Whyatt G. et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J. Med. Virol. 2021; 2 (93): 1013–1022. DOI: 10.1002/jmv.26368.
14. Huang C., Huang L., Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021; 397 (10270): 220–232. DOI: 10.1016/S0140-6736(20)32656-8.
15. Martin-Villares C., Perez Molina-Ramirez C., Bartolome-Benito M. et al. Outcome of 1890 tracheostomies for critical COVID-19 patients: a national cohort study in Spain. Eur. Arch. Otorhinolaryngol. 2021; 278 (5): 1605–1612. DOI: 10.1007/s00405-020-06220-3.
16. Myall K.J., Mukherjee B., Castanheira A.M. et al. Persistent post- COVID-19 interstitial lung disease: An observational study of corticosteroid treatment. Ann. Am. Thorac. Soc. 2021; 18 (5): 799–806. DOI: 10.1513/AnnalsATS.202008-1002OC.
17. Corrigan D., Prucnal C., Kabrhel C. Pulmonary embolism: the diagnosis, risk-stratification, treatment and disposition of emergency department patients. Clin. Exp. Emerg. Med. 2016; 3 (3): 117–125. DOI: 10.15441/ceem.16.146.
18. Shah A.S., Wong A.W., Hague C.J. et al. A prospective study of 12-week respiratory outcomes in COVID-19-related hospitalisations. Thorax. 2021; 76 (4): 402–404. DOI: 10.1136/thoraxjnl-2020-216308.
19. Cui S., Chen S., Li X. et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J. Thromb. Haemost. 2020; 18 (6): 1421–1424. DOI: 10.1111/jth.14830.
20. Ryan N.M., Birring S.S., Gibson P.G. Gabapentin for refractory chronic cough: a randomised, double-blind, placebo-controlled trial. Lancet. 2012; 380 (9853): 1583–1589. DOI: 10.1016/S0140-6736(12)60776-4.
21. Vertigan A.E., Kapela S.L., Ryan N.M. et al. Pregabalin and speech pathology combination therapy for refractory chronic cough: A randomized controlled trial. Chest. 2016; 149 (3): 639–648. DOI: 10.1378/chest.15-1271.
22. George P.M., Wells A.U., Jenkins R.G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir. Med. 2020; 8 (8): 807–815. DOI: 10.1016/S2213-2600(20)30225-3.
23. Ayoubkhani D., Khunti K., Nafilyan V. et al. Post-Covid syndrome in individuals admitted to hospital with Covid-19: retrospective cohort study. BMJ. 2021; 372: n693. DOI: 10.1136/bmj.n693.
24. Corrado D., Link M. S., Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N. Engl. J. Med. 2017; 376 (1): 61–72. DOI: 10.1056/NEJMra1509267.
25. Wu Q., Zhou L., Sun X. et al. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci. Rep. 2017; 7 (1): 9110. DOI: 10.1038/s41598-017-09536-z.
26. Agarwal A.K., Garg R., Ritch A., Sarkar P. Postural orthostatic tachycardia syndrome. Postgrad. Med. J. 2007; 83 (981): 478–480. DOI: 10.1136/pgmj.2006.055046.
27. Lau S.T., Yu W.C., Mok N.S. et al. Tachycardia amongst subjects recovering from severe acute respiratory syndrome (SARS). Int. J. Cardiol. 2005; 100 (1): 167–169. DOI: 10.1016/j.ijcard.2004.06.022.
28. Carvalho-Schneider C., Laurent E., Lemaignen A. et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin. Microbiol. Infect. 2021; 27 (2): 258–263. DOI: 10.1016/j.cmi.2020.09.052.
29. Rajpal S., Tong M. S., Borchers J. et al. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection. JAMA Cardiol. 2021; 6 (1): 116–118. DOI: 10.1001/jamacardio.2020.4916.
30. Puntmann V.O., Carerj M.L., Wieters I. et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5 (11): 1265–1273. DOI: 10.1001/jamacardio.2020.3557.
31. Lopez-Leon S., Wegman-Ostrosky T., Perelman C. et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. medRxiv. 2021 [Preprint. Posted: January 30, 2021]. DOI: 10.1101/2021.01.27.21250617.
32. Makaronidis J., Firman C., Magee C.G. et al. Distorted chemosensory perception and female sex associate with persistent smell and/or taste loss in people with SARS-CoV-2 antibodies: a community based cohort study investigating clinical course and resolution of acute smell and/or taste loss in people with and without SARS-CoV-2 antibodies in London, UK. BMC Infect. Dis. 2021; 21 (1): 221. DOI: 10.1186/s12879-021-05927-w.
33. Bolay H., Gül A., Baykan B. COVID-19 is a real headache! Headache. 2020; 60 (7): 1415–1421. DOI: 10.1111/head.13856.
34. Nalbandian A., Sehgal K., Gupta A. et al. Post-acute COVID-19 syndrome. Nat. Med. 2021; 27 (4): 601–615. DOI: 10.1038/s41591-021-01283-z.
35. Miskowiak K.W., Johnsen S., Sattler S.M. et al. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur. Neuropsychopharmacol. 2021; 46: 39–48. DOI: 10.1016/j.euroneuro.2021.03.019.
36. Kincaid K.J., Kung J.C., Senetar A.J. et al. Post-COVID seizure: A new feature of “long-COVID”. eNeurologicalSci. 2021; 23: 100340. DOI: 10.1016/j.ensci.2021.100340.
37. García-Manzanedo S., López de la OlivaCalvo L., Ruiz Álvarez L. Guillain-Barré syndrome after Covid-19 infection. Med. Clin. (Engl. Ed.). 2020; 155 (8): 366. DOI: 10.1016/j.medcle.2020.06.019.
38. Raahimi M.M., Kane A., Moore C.E., Alareed A.W. Late onset of Guillain-Barré syndrome following SARS-CoV-2 infection: part of “long COVID-19 syndrome”? BMJ Case Rep. 2021; 14 (1): e240178. DOI: 10.1136/bcr-2020-240178.
39. Long COVID: understanding the neurological effects. Lancet Neurol. 2021; 20 (4): 247. DOI: 10.1016/S1474-4422(21)00059-4.
40. Stefano G.B. Historical insight into infections and disorders associated with neurological and psychiatric sequelae similar to long COVID. Med. Sci. Monit. 2021; 27: e931447. DOI: 10.12659/MSM.931447.
41. Matschke J., Lütgehetmann M., Hagel C. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020; 19 (11): 919–929. DOI: 10.1016/S1474-4422(20)30308-2.
42. Meinhardt J., Radke J., Dittmayer C. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2021; 24 (2): 168–175. DOI: 10.1038/s41593-020-00758-5.
43. Tandon M., Kataria S., Patel J. et al. A comprehensive systematic review of CSF analysis that defines neurological manifestations of COVID-19. Int. J. Infect. Dis. 2021; 104: 390–397. DOI: 10.1016/j.ijid.2021.01.002.
44. Reichard R.R., Kashani K.B., Boire N.A. et al. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 2020; 140 (1): 1–6. DOI: 10.1007/s00401-020-02166-2.
45. Guedj E., Campion J. Y., Dudouet P. et al. 18F-FDG brain PET hypometabolism in patients with long COVID. Eur. J. Nucl. Med. Mol. Imaging. 2021; 48 (9): 2823–2833. DOI: 10.1007/s00259-021-05215-4.
46. Silva Andrade B., Siqueira S., de Assis Soares W.R. et al. Long-COVID and post-COVID health complications: an up-to-date review on clinical conditions and their possible molecular mechanisms. Viruses. 2021; 13 (4): 700. DOI: 10.3390/v13040700.
47. Sher L. Are COVID-19 survivors at increased risk for suicide? Acta Neuropsychiatr. 2020; 32 (5): 270. DOI: 10.1017/neu.2020.21.
48. Steardo L., Steardo L., Verkhratsky A. Psychiatric face of COVID-19. Transl. Psychiatry. 2020; 10 (1): 261. DOI: 10.1038/s41398-020-00949-5.
49. Sher L. The impact of the COVID-19 pandemic on suicide rates. QJM. 2020; 113 (10): 707–712. DOI: 10.1093/qjmed/hcaa202.
50. ZOE COVID Study. How long does COVID-19 last? Available at: https://covid.joinzoe.com/post/covid-long-term
51. Greenhalgh T., Knight M., A’Court C. et al. Management of postacute Covid-19 in primary care. BMJ. 2020; 370: m3026. DOI: 10.1136/bmj.m3026.
52. Raman B., Cassar M. P., Tunnicliffe E. M. et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospi tal discharge. EClinicalMedicine. 2021; 31: 100683. DOI: 10.1016/j.eclinm.2020.100683.
53. Mazza M. G., De Lorenzo R., Conte C. et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun. 2020; 89: 594–600. DOI: 10.1016/j.bbi.2020.07.037.
54. Davydow D.S., Katon W.J., Zatzick D.F. Psychiatric morbidity and functional impairments in survivors of burns, traumatic injuries, and ICU stays for other critical illnesses: a review of the literature. Int. Rev. Psychiatry. 2009; 21 (6): 531–538. DOI: 10.3109/09540260903343877.
55. Higgins V., Sohaei D., Diamandis E.P., Prassas I. COVID-19: from an acute to chronic disease? Potential long-term health consequences. Crit. Rev. Clin. Lab. Sci. 2021; 58 (5): 297–310. DOI: 10.1080/10408363.2020.1860895.
56. Acharya S., Anwar S., Siddiqui F.S. et al. Renal artery thrombosis in COVID-19. IDCases. 2020; 22: e00968. DOI: 10.1016/j.idcr.2020.e00968.
57. Idilman I.S., Telli Dizman G., Ardali Duzgun S. et al. Lung and kidney perfusion deficits diagnosed by dual-energy computed tomography in patients with COVID-19-related systemic microangiopathy. Eur. Radiol. 2021; 31 (2): 1090–1099. DOI: 10.1007/s00330-020-07155-3.
58. Ramanathan M., Chueng T., Fernandez E., Gonzales-Zamora J. Concomitant renal and splenic infarction as a complication of COVID-19: a case report and literature review. Infez. Med. 2020; 28 (4): 611–615. Available at: https://infezmed.it/media/journal/Vol_28_4_2020_20.pdf
59. Stevens J.S., King K.L., Robbins-Juarez S.Y. et al. High rate of renal recovery in survivors of COVID-19 associated acute renal failure requiring renal replacement therapy. PloS One. 2020; 15 (12): e0244131. DOI: 10.1371/journal.pone.0244131.
60. Aminian A., Bena J., Pantalone K.M., Burguera B. Association of obesity with postacute sequelae of COVID-19 (PASC). Diabetes Obes. Metab. 2021; 23 (9): 2183–2188. DOI: 10.1111/dom.14454.
61. Suwanwongse K., Shabarek N. Newly diagnosed diabetes mellitus, DKA, and COVID-19: Causality or coincidence? A report of three cases. J. Med. Virol. 2021; 93 (2): 1150–1153. DOI: 10.1002/jmv.26339.
62. Sathish T., Kapoor N., Cao Y. et al. Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. Diabetes Obes. Metab. 2021; 23 (3): 870–874. DOI: 10.1111/dom.14269.
63. Sathish T., Anton M.C., Sivakumar T. New-onset diabetes in “long COVID”. J. Diabetes. 2021; 13 (8): 693–694. DOI: 10.1111/1753-0407.13187.
64. CoviDiab Registry. Available at: https://covidiab.e-dendrite.com/index.html
65. Tee L.Y., Harjanto S., Rosario B.H. COVID-19 complicated by Hashimoto’s thyroiditis. Singapore Med. J. 2021; 62 (5): 265. DOI: 10.11622/smedj.2020106.
66. Mateu-Salat M., Urgell E., Chico A. SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19. J. Endocrinol. Invest. 2020; 43 (10): 1527–1528. DOI: 10.1007/s40618-020-01366-7.
67. Caron P. Thyroiditis and SARS-CoV-2 pandemic: a review. Endocrine. 2021; 72 (2): 326–331. DOI: 10.1007/s12020-021-02689-y.
68. EurekAlert. COVID-19 can cause atypical thyroid inflammation. Available at: https://www.eurekalert.org/news-releases/787035
69. McMahon D.E., Gallman A.E., Hruza G.J. et al. Long COVID in the skin: a registry analysis of COVID-19 dermatological duration. Lancet Infect. Dis. 2021; 21 (3): 313–314. DOI: 10.1016/S1473-3099(20)30986-5.
70. Turkmen D., Altunisik N., Sener S., Colak C. Evaluation of the effects of COVID-19 pandemic on hair diseases through a web-based questionnaire. Dermatol. Ther. 2020; 33 (6): e13923. DOI: 10.1111/dth.13923.
71. Mehta P., Bunker C.B., Ciurtin C. et al. Chilblain-like acral lesions in long COVID-19: management and implications for understanding microangiopathy. Lancet Infect. Dis. 2021; 21 (7): 912. DOI: 10.1016/S1473-3099(21)00133-X.
72. Riphagen S., Gomez X., Gonzalez-Martinez C. et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020; 395 (10237): 1607–1608. DOI: 10.1016/S0140-6736(20)31094-1.
73. Dufort E.M., Koumans E.H., Chow E.J. et al. Multisystem inflammatory syndrome in children in New York state. N. Engl. J. Med. 2020; 383 (4): 347–358. DOI: 10.1056/NEJMoa2021756.
74. Feldstein L.R., Rose E.B., Horwitz S.M. et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N. Engl. J. Med. 2020; 383 (4): 334–346. DOI: 10.1056/NEJMoa2021680.
75. Verdoni L., Mazza A., Gervasoni A. et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020; 395 (10239): 1771–1778. DOI: 10.1016/S0140-6736(20)31103-X.
76. McArdle A.J., Vito O., Patel H. et al. Treatment of multisystem inflammatory syndrome in children. N. Engl. J. Med. 2021; 385 (1): 11–22. DOI: 10.1056/NEJMoa2102968.
77. Son M.B.F., Murray N., Friedman K. et al. Multisystem inflammatory syndrome in children – initial therapy and outcomes. N. Engl. J. Med. 2021; 385 (1): 23–34. DOI: 10.1056/NEJMoa2102605.
78. Molteni E., Sudre C.H., Canas L.S. et al. Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2. Lancet Child Adolesc. Health. 2021; 5 (10): 708–718. DOI: 10.1016/S2352-4642(21)00198-X.
79. Osmanov I.M., Spiridonova E., Bobkova P. et al. Risk factors for long Covid in previously hospitalised children using the ISARIC Global follow-up protocol: A prospective cohort study. Eur. Respir. J. 2021; 58 (3): 2101341. DOI: 10.1183/13993003.01341-2021.
80. Munblit D., Sigfrid L., Warner J.O. Setting priorities to address research gaps in long-term COVID-19 outcomes in children. JAMA Pediatr. 2021 [Preprint. Posted: August 02, 2021]. DOI: 10.1001/jamapediatrics.2021.2281.
81. The Lancet. Facing up to long COVID. Lancet. 2020; 396 (10266): 1861. DOI: 10.1016/S0140-6736(20)32662-3.
82. Alwan N.A. Track COVID-19 sickness, not just positive tests and deaths. Nature. 2020; 584 (7820): 170. DOI: 10.1038/d41586-020-02335-z.
Review
For citations:
Baimukhambetova D.V., Gorina A.O., Rumyantsev M.A., Shikhaleva A.A., El-Taravi Ya.A., Bondarenko E.D., Kapustina V.A., Munblit D.B. Post-covid condition in adults and children. PULMONOLOGIYA. 2021;31(5):562-570. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-5-562-570