Постковидное состояние у взрослых и детей
https://doi.org/10.18093/0869-0189-2021-31-5-562-570
Аннотация
Несмотря на впечатляющий прогресс в диагностике и лечении острой фазы COVID-19, первые данные, касающиеся последствий перенесенной инфекции, только появляются в научной литературе. Для описания широкого спектра проявлений перенесенного острого COVID-19 Всемирной организацией здравоохранения предложен термин «постковидное состояние» (ПКС). При наличии > 200 млн подтвержденных случаев COVID-19 ПКС рискует стать проблемой на многие годы для миллионов людей, переживших COVID-19 во всем мире. Сравнительно небольшое число исследований проводилось по данным первичного звена здравоохранения, крайне малочислены работы, посвященные исключительно детям и подросткам.
Целью исследования явилось формирование представления основных данных о ПКС. По результатам анализа статей, опубликованных в международных рецензируемых журналах, а также клинических протоколов, установлено, что ПКС характеризуется крайне большим разнообразием системных, сердечно-легочных, желудочно-кишечных, неврологических и психосоциальных симптомов.
Заключение. Несмотря на то, что представить распространенность ПКС на сегодняшний день невозможно в связи с методологическими недостатками существующих исследований, данная проблема, без сомнений, важна для здравоохранения, при этом для выявления оптимальных подходов к профилактике и лечению ПКС необходимы дополнительные обсервационные и интервенционные исследования.
Об авторах
Д. В. БаймухамбетоваРоссия
Баймухамбетова Дина Владимировна – студентка
119991, Москва, ул. Трубецкая, 8, стр. 2
тел.: (499) 256-57-72
Конфликт интересов:
Конфликт интересов авторами не заявлен
А. О. Горина
Россия
Горина Анастасия Олеговна – студентка
119991, Москва, ул. Трубецкая, 8, стр. 2
тел.: (499) 256-57-72
Конфликт интересов:
Конфликт интересов авторами не заявлен
М. А. Румянцев
Россия
Румянцев Михаил Анатольевич – студент
119991, Москва, ул. Трубецкая, 8, стр. 2
тел.: (499) 256-57-72
Конфликт интересов:
Конфликт интересов авторами не заявлен
А. А. Шихалева
Россия
Шихалева Анастасия Алексеевна – студентка
119991, Москва, ул. Трубецкая, 8, стр. 2
тел.: (499) 256-57-72
Конфликт интересов:
Конфликт интересов авторами не заявлен
Я. А. Эль-Тарави
Россия
Эль-Тарави Ясмин Ахмед Али – студент
119991, Москва, ул. Трубецкая, 8, стр. 2
тел.: (499) 256-57-72
Конфликт интересов:
Конфликт интересов авторами не заявлен
Е. Д. Бондаренко
Россия
Бондаренко Елена Дмитриевна – ассистент кафедры педиатрии и детских инфекционных болезней Клинического института детского здоровья имени Н.Ф. Филатова
119991, Москва, ул. Трубецкая, 8, стр. 2
тел.: (499) 256-57-72
Конфликт интересов:
Конфликт интересов авторами не заявлен
В. А. Капустина
Россия
Капустина Валентина Андреевна – к. м. н., доцент кафедры факультетской терапии № 1 Института клинической медицины имени Н.В. Склифосовского
119991, Москва, ул. Трубецкая, 8, стр. 2
тел.: (499) 256-57-72
Конфликт интересов:
Конфликт интересов авторами не заявлен
Д. Б. Мунблит
Россия
Мунблит Даниил Борисович – доктор медицины, PhD по педиатрии, профессор кафедры педиатрии и детских инфекционных болезней Клинического института детского здоровья имени Н.Ф. Филатова
119991, Москва, ул. Трубецкая, 8, стр. 2
тел.: (499) 256-57-72
Конфликт интересов:
Конфликт интересов авторами не заявлен
Список литературы
1. World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available at: https://covid19.who.int/?gclid=EAIaIQobChMIxs-CobqP8wIVo0aRBR3NvAqUEAAYASABEgKQ9_D_BwE
2. Kobak D. Excess mortality reveals Covid’s true toll in Russia. Signif. (Oxf). 2021; 18 (1): 16–19. DOI: 10.1111/1740-9713.01486.
3. RECOVERY Collaborative Group: Horby P., Lim W.S., Emberson J.R. et al. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 2021; 384 (8): 693–704. DOI: 10.1056/NEJMoa2021436.
4. RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021; 397 (10285): 1637–1645. DOI: 10.1016/S0140-6736(21)00676-0.
5. Wise J. Long COVID: WHO calls on countries to offer patients more rehabilitation. BMJ. 2021; 372: n405. DOI: 10.1136/bmj.n405.
6. Centers for Disease Control and Prevention (CDC). COVID-19. Your Health. Available at: https://www.cdc.gov/coronavirus/2019-ncov/your-health/index.html [Assessed: August 10, 2021].
7. Garg P., Arora U., Kumar A., Wig N. The “post-COVID” syndrome: How deep is the damage? J. Med. Virol. 2021; 2 (93): 673–674. DOI: 10.1002/jmv.26465.
8. COVID-19 rapid guideline: managing the long-term effects of COVID-19: NICE Guideline No.188. London: National Institute for Health and Care Excellence; 2020. Available at: https://www.nice.org.uk/guidance/ng188/resources/covid19-rapid-guideline-managingthe-longterm-effects-of-covid19-pdf-66142028400325
9. Michelen M., Manoharan L., Elkheir N. et al. Characterising longterm Covid-19: a rapid living systematic review. medRxiv. 2020 [Preprint. Posted: August 12, 2020]. DOI: 10.1101/2020.12.08.20246025.
10. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323 (13): 1239–1242. DOI: 10.1001/jama.2020.2648.
11. Garrigues E., Janvier P., Kherabi Y. et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 2020; 81 (6): e4–6. DOI: 10.1016/j.jinf.2020.08.029.
12. Chopra V., Flanders S. A., O’Malley M. et al. Sixty-day outcomes among patients hospitalized with COVID-19. Ann. Intern. Med. 2021; 174 (4): 576–578. DOI: 10.7326/M20-5661.
13. Halpin S.J., McIvor C., Whyatt G. et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J. Med. Virol. 2021; 2 (93): 1013–1022. DOI: 10.1002/jmv.26368.
14. Huang C., Huang L., Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021; 397 (10270): 220–232. DOI: 10.1016/S0140-6736(20)32656-8.
15. Martin-Villares C., Perez Molina-Ramirez C., Bartolome-Benito M. et al. Outcome of 1890 tracheostomies for critical COVID-19 patients: a national cohort study in Spain. Eur. Arch. Otorhinolaryngol. 2021; 278 (5): 1605–1612. DOI: 10.1007/s00405-020-06220-3.
16. Myall K.J., Mukherjee B., Castanheira A.M. et al. Persistent post- COVID-19 interstitial lung disease: An observational study of corticosteroid treatment. Ann. Am. Thorac. Soc. 2021; 18 (5): 799–806. DOI: 10.1513/AnnalsATS.202008-1002OC.
17. Corrigan D., Prucnal C., Kabrhel C. Pulmonary embolism: the diagnosis, risk-stratification, treatment and disposition of emergency department patients. Clin. Exp. Emerg. Med. 2016; 3 (3): 117–125. DOI: 10.15441/ceem.16.146.
18. Shah A.S., Wong A.W., Hague C.J. et al. A prospective study of 12-week respiratory outcomes in COVID-19-related hospitalisations. Thorax. 2021; 76 (4): 402–404. DOI: 10.1136/thoraxjnl-2020-216308.
19. Cui S., Chen S., Li X. et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J. Thromb. Haemost. 2020; 18 (6): 1421–1424. DOI: 10.1111/jth.14830.
20. Ryan N.M., Birring S.S., Gibson P.G. Gabapentin for refractory chronic cough: a randomised, double-blind, placebo-controlled trial. Lancet. 2012; 380 (9853): 1583–1589. DOI: 10.1016/S0140-6736(12)60776-4.
21. Vertigan A.E., Kapela S.L., Ryan N.M. et al. Pregabalin and speech pathology combination therapy for refractory chronic cough: A randomized controlled trial. Chest. 2016; 149 (3): 639–648. DOI: 10.1378/chest.15-1271.
22. George P.M., Wells A.U., Jenkins R.G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir. Med. 2020; 8 (8): 807–815. DOI: 10.1016/S2213-2600(20)30225-3.
23. Ayoubkhani D., Khunti K., Nafilyan V. et al. Post-Covid syndrome in individuals admitted to hospital with Covid-19: retrospective cohort study. BMJ. 2021; 372: n693. DOI: 10.1136/bmj.n693.
24. Corrado D., Link M. S., Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N. Engl. J. Med. 2017; 376 (1): 61–72. DOI: 10.1056/NEJMra1509267.
25. Wu Q., Zhou L., Sun X. et al. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci. Rep. 2017; 7 (1): 9110. DOI: 10.1038/s41598-017-09536-z.
26. Agarwal A.K., Garg R., Ritch A., Sarkar P. Postural orthostatic tachycardia syndrome. Postgrad. Med. J. 2007; 83 (981): 478–480. DOI: 10.1136/pgmj.2006.055046.
27. Lau S.T., Yu W.C., Mok N.S. et al. Tachycardia amongst subjects recovering from severe acute respiratory syndrome (SARS). Int. J. Cardiol. 2005; 100 (1): 167–169. DOI: 10.1016/j.ijcard.2004.06.022.
28. Carvalho-Schneider C., Laurent E., Lemaignen A. et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin. Microbiol. Infect. 2021; 27 (2): 258–263. DOI: 10.1016/j.cmi.2020.09.052.
29. Rajpal S., Tong M. S., Borchers J. et al. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection. JAMA Cardiol. 2021; 6 (1): 116–118. DOI: 10.1001/jamacardio.2020.4916.
30. Puntmann V.O., Carerj M.L., Wieters I. et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5 (11): 1265–1273. DOI: 10.1001/jamacardio.2020.3557.
31. Lopez-Leon S., Wegman-Ostrosky T., Perelman C. et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. medRxiv. 2021 [Preprint. Posted: January 30, 2021]. DOI: 10.1101/2021.01.27.21250617.
32. Makaronidis J., Firman C., Magee C.G. et al. Distorted chemosensory perception and female sex associate with persistent smell and/or taste loss in people with SARS-CoV-2 antibodies: a community based cohort study investigating clinical course and resolution of acute smell and/or taste loss in people with and without SARS-CoV-2 antibodies in London, UK. BMC Infect. Dis. 2021; 21 (1): 221. DOI: 10.1186/s12879-021-05927-w.
33. Bolay H., Gül A., Baykan B. COVID-19 is a real headache! Headache. 2020; 60 (7): 1415–1421. DOI: 10.1111/head.13856.
34. Nalbandian A., Sehgal K., Gupta A. et al. Post-acute COVID-19 syndrome. Nat. Med. 2021; 27 (4): 601–615. DOI: 10.1038/s41591-021-01283-z.
35. Miskowiak K.W., Johnsen S., Sattler S.M. et al. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur. Neuropsychopharmacol. 2021; 46: 39–48. DOI: 10.1016/j.euroneuro.2021.03.019.
36. Kincaid K.J., Kung J.C., Senetar A.J. et al. Post-COVID seizure: A new feature of “long-COVID”. eNeurologicalSci. 2021; 23: 100340. DOI: 10.1016/j.ensci.2021.100340.
37. García-Manzanedo S., López de la OlivaCalvo L., Ruiz Álvarez L. Guillain-Barré syndrome after Covid-19 infection. Med. Clin. (Engl. Ed.). 2020; 155 (8): 366. DOI: 10.1016/j.medcle.2020.06.019.
38. Raahimi M.M., Kane A., Moore C.E., Alareed A.W. Late onset of Guillain-Barré syndrome following SARS-CoV-2 infection: part of “long COVID-19 syndrome”? BMJ Case Rep. 2021; 14 (1): e240178. DOI: 10.1136/bcr-2020-240178.
39. Long COVID: understanding the neurological effects. Lancet Neurol. 2021; 20 (4): 247. DOI: 10.1016/S1474-4422(21)00059-4.
40. Stefano G.B. Historical insight into infections and disorders associated with neurological and psychiatric sequelae similar to long COVID. Med. Sci. Monit. 2021; 27: e931447. DOI: 10.12659/MSM.931447.
41. Matschke J., Lütgehetmann M., Hagel C. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020; 19 (11): 919–929. DOI: 10.1016/S1474-4422(20)30308-2.
42. Meinhardt J., Radke J., Dittmayer C. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2021; 24 (2): 168–175. DOI: 10.1038/s41593-020-00758-5.
43. Tandon M., Kataria S., Patel J. et al. A comprehensive systematic review of CSF analysis that defines neurological manifestations of COVID-19. Int. J. Infect. Dis. 2021; 104: 390–397. DOI: 10.1016/j.ijid.2021.01.002.
44. Reichard R.R., Kashani K.B., Boire N.A. et al. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 2020; 140 (1): 1–6. DOI: 10.1007/s00401-020-02166-2.
45. Guedj E., Campion J. Y., Dudouet P. et al. 18F-FDG brain PET hypometabolism in patients with long COVID. Eur. J. Nucl. Med. Mol. Imaging. 2021; 48 (9): 2823–2833. DOI: 10.1007/s00259-021-05215-4.
46. Silva Andrade B., Siqueira S., de Assis Soares W.R. et al. Long-COVID and post-COVID health complications: an up-to-date review on clinical conditions and their possible molecular mechanisms. Viruses. 2021; 13 (4): 700. DOI: 10.3390/v13040700.
47. Sher L. Are COVID-19 survivors at increased risk for suicide? Acta Neuropsychiatr. 2020; 32 (5): 270. DOI: 10.1017/neu.2020.21.
48. Steardo L., Steardo L., Verkhratsky A. Psychiatric face of COVID-19. Transl. Psychiatry. 2020; 10 (1): 261. DOI: 10.1038/s41398-020-00949-5.
49. Sher L. The impact of the COVID-19 pandemic on suicide rates. QJM. 2020; 113 (10): 707–712. DOI: 10.1093/qjmed/hcaa202.
50. ZOE COVID Study. How long does COVID-19 last? Available at: https://covid.joinzoe.com/post/covid-long-term
51. Greenhalgh T., Knight M., A’Court C. et al. Management of postacute Covid-19 in primary care. BMJ. 2020; 370: m3026. DOI: 10.1136/bmj.m3026.
52. Raman B., Cassar M. P., Tunnicliffe E. M. et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospi tal discharge. EClinicalMedicine. 2021; 31: 100683. DOI: 10.1016/j.eclinm.2020.100683.
53. Mazza M. G., De Lorenzo R., Conte C. et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun. 2020; 89: 594–600. DOI: 10.1016/j.bbi.2020.07.037.
54. Davydow D.S., Katon W.J., Zatzick D.F. Psychiatric morbidity and functional impairments in survivors of burns, traumatic injuries, and ICU stays for other critical illnesses: a review of the literature. Int. Rev. Psychiatry. 2009; 21 (6): 531–538. DOI: 10.3109/09540260903343877.
55. Higgins V., Sohaei D., Diamandis E.P., Prassas I. COVID-19: from an acute to chronic disease? Potential long-term health consequences. Crit. Rev. Clin. Lab. Sci. 2021; 58 (5): 297–310. DOI: 10.1080/10408363.2020.1860895.
56. Acharya S., Anwar S., Siddiqui F.S. et al. Renal artery thrombosis in COVID-19. IDCases. 2020; 22: e00968. DOI: 10.1016/j.idcr.2020.e00968.
57. Idilman I.S., Telli Dizman G., Ardali Duzgun S. et al. Lung and kidney perfusion deficits diagnosed by dual-energy computed tomography in patients with COVID-19-related systemic microangiopathy. Eur. Radiol. 2021; 31 (2): 1090–1099. DOI: 10.1007/s00330-020-07155-3.
58. Ramanathan M., Chueng T., Fernandez E., Gonzales-Zamora J. Concomitant renal and splenic infarction as a complication of COVID-19: a case report and literature review. Infez. Med. 2020; 28 (4): 611–615. Available at: https://infezmed.it/media/journal/Vol_28_4_2020_20.pdf
59. Stevens J.S., King K.L., Robbins-Juarez S.Y. et al. High rate of renal recovery in survivors of COVID-19 associated acute renal failure requiring renal replacement therapy. PloS One. 2020; 15 (12): e0244131. DOI: 10.1371/journal.pone.0244131.
60. Aminian A., Bena J., Pantalone K.M., Burguera B. Association of obesity with postacute sequelae of COVID-19 (PASC). Diabetes Obes. Metab. 2021; 23 (9): 2183–2188. DOI: 10.1111/dom.14454.
61. Suwanwongse K., Shabarek N. Newly diagnosed diabetes mellitus, DKA, and COVID-19: Causality or coincidence? A report of three cases. J. Med. Virol. 2021; 93 (2): 1150–1153. DOI: 10.1002/jmv.26339.
62. Sathish T., Kapoor N., Cao Y. et al. Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. Diabetes Obes. Metab. 2021; 23 (3): 870–874. DOI: 10.1111/dom.14269.
63. Sathish T., Anton M.C., Sivakumar T. New-onset diabetes in “long COVID”. J. Diabetes. 2021; 13 (8): 693–694. DOI: 10.1111/1753-0407.13187.
64. CoviDiab Registry. Available at: https://covidiab.e-dendrite.com/index.html
65. Tee L.Y., Harjanto S., Rosario B.H. COVID-19 complicated by Hashimoto’s thyroiditis. Singapore Med. J. 2021; 62 (5): 265. DOI: 10.11622/smedj.2020106.
66. Mateu-Salat M., Urgell E., Chico A. SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19. J. Endocrinol. Invest. 2020; 43 (10): 1527–1528. DOI: 10.1007/s40618-020-01366-7.
67. Caron P. Thyroiditis and SARS-CoV-2 pandemic: a review. Endocrine. 2021; 72 (2): 326–331. DOI: 10.1007/s12020-021-02689-y.
68. EurekAlert. COVID-19 can cause atypical thyroid inflammation. Available at: https://www.eurekalert.org/news-releases/787035
69. McMahon D.E., Gallman A.E., Hruza G.J. et al. Long COVID in the skin: a registry analysis of COVID-19 dermatological duration. Lancet Infect. Dis. 2021; 21 (3): 313–314. DOI: 10.1016/S1473-3099(20)30986-5.
70. Turkmen D., Altunisik N., Sener S., Colak C. Evaluation of the effects of COVID-19 pandemic on hair diseases through a web-based questionnaire. Dermatol. Ther. 2020; 33 (6): e13923. DOI: 10.1111/dth.13923.
71. Mehta P., Bunker C.B., Ciurtin C. et al. Chilblain-like acral lesions in long COVID-19: management and implications for understanding microangiopathy. Lancet Infect. Dis. 2021; 21 (7): 912. DOI: 10.1016/S1473-3099(21)00133-X.
72. Riphagen S., Gomez X., Gonzalez-Martinez C. et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020; 395 (10237): 1607–1608. DOI: 10.1016/S0140-6736(20)31094-1.
73. Dufort E.M., Koumans E.H., Chow E.J. et al. Multisystem inflammatory syndrome in children in New York state. N. Engl. J. Med. 2020; 383 (4): 347–358. DOI: 10.1056/NEJMoa2021756.
74. Feldstein L.R., Rose E.B., Horwitz S.M. et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N. Engl. J. Med. 2020; 383 (4): 334–346. DOI: 10.1056/NEJMoa2021680.
75. Verdoni L., Mazza A., Gervasoni A. et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020; 395 (10239): 1771–1778. DOI: 10.1016/S0140-6736(20)31103-X.
76. McArdle A.J., Vito O., Patel H. et al. Treatment of multisystem inflammatory syndrome in children. N. Engl. J. Med. 2021; 385 (1): 11–22. DOI: 10.1056/NEJMoa2102968.
77. Son M.B.F., Murray N., Friedman K. et al. Multisystem inflammatory syndrome in children – initial therapy and outcomes. N. Engl. J. Med. 2021; 385 (1): 23–34. DOI: 10.1056/NEJMoa2102605.
78. Molteni E., Sudre C.H., Canas L.S. et al. Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2. Lancet Child Adolesc. Health. 2021; 5 (10): 708–718. DOI: 10.1016/S2352-4642(21)00198-X.
79. Osmanov I.M., Spiridonova E., Bobkova P. et al. Risk factors for long Covid in previously hospitalised children using the ISARIC Global follow-up protocol: A prospective cohort study. Eur. Respir. J. 2021; 58 (3): 2101341. DOI: 10.1183/13993003.01341-2021.
80. Munblit D., Sigfrid L., Warner J.O. Setting priorities to address research gaps in long-term COVID-19 outcomes in children. JAMA Pediatr. 2021 [Preprint. Posted: August 02, 2021]. DOI: 10.1001/jamapediatrics.2021.2281.
81. The Lancet. Facing up to long COVID. Lancet. 2020; 396 (10266): 1861. DOI: 10.1016/S0140-6736(20)32662-3.
82. Alwan N.A. Track COVID-19 sickness, not just positive tests and deaths. Nature. 2020; 584 (7820): 170. DOI: 10.1038/d41586-020-02335-z.
Рецензия
Для цитирования:
Баймухамбетова Д.В., Горина А.О., Румянцев М.А., Шихалева А.А., Эль-Тарави Я.А., Бондаренко Е.Д., Капустина В.А., Мунблит Д.Б. Постковидное состояние у взрослых и детей. Пульмонология. 2021;31(5):562-570. https://doi.org/10.18093/0869-0189-2021-31-5-562-570
For citation:
Baimukhambetova D.V., Gorina A.O., Rumyantsev M.A., Shikhaleva A.A., El-Taravi Y.A., Bondarenko E.D., Kapustina V.A., Munblit D.B. Post-covid condition in adults and children. PULMONOLOGIYA. 2021;31(5):562-570. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-5-562-570