Preview

PULMONOLOGIYA

Advanced search

The role of metabolic syndrome factors in the pathogenesis of respiratory disorders

https://doi.org/10.18093/0869-0189-2022-2419

Abstract

For clinical medicine the problem of complications associated with the metabolic syndrome is significant and requires a multidisciplinary approach, since the metabolic syndrome itself has long since moved from the sphere of interest of endocrinologists and cardiologists to general medical practice. Most commonly, the metabolic syndrome leads to cardiovascular and cerebrovascular complications. One of the topics currently under discussion is the question of the influence of the components of the metabolic syndrome on the condition of the respiratory system. An epidemiological association between visceral obesity and insulin resistance with chronic obstructive pulmonary disease, bronchial asthma, and obstructive sleep apnea/hypopnea syndrome has been established. Although respiratory disorders are common in patients with clinical equivalents of the metabolic syndrome, their pathogenesis is not well understood. Aim of the study was to analyze the role of individual most significant components (pathogenetic factors) of the metabolic syndrome in the pathogenesis of respiratory disorders. Conclusion. Clinical and laboratory equivalents of the metabolic syndrome, such as obesity, hyperglycemia, and hyperinsulinemia, contribute to respiratory function impairment. The most discussed process that combines the components of the metabolic syndrome and its associated complications is chronic systemic inflammation. The review presents a conceptual scheme of the pathogenesis of respiratory disease in the metabolic syndrome and highlights the role of its factors in the development of qualitative changes in the air-blood barrier and a decrease in the diffusion capacity of the lungs. The authors pointed out a number of unresolved issues in the pathogenesis of respiratory disorders in the metabolic syndrome and also emphasized the relevance of experimental studies of early mechanisms of lung disease development using animal models.

About the Authors

O. V. Voronkova
Federal State Budgetary Educational Institution of Higher Education “Siberian State Medical University”, Ministry of Healthcare of the Russian Federation
Russian Federation

Olga V. Voronkova - Doctor of Medicine, Associate Professor, Head of the Department of Biology and Genetics, Federal State Budgetary Educational Institution of Higher Education “Siberian State Medical University”, Ministry of Healthcare of the Russian Federation.

Moskovskiy trakt 2, Tomsk, 634050

tel.: (3822) 90-11-01 (add. 1945)


Competing Interests:

The authors declare the absence of obvious and potential conflicts of interest related to the content of this article



Yu. G. Birulina
Federal State Budgetary Educational Institution of Higher Education “Siberian State Medical University”, Ministry of Healthcare of the Russian Federation
Russian Federation

Yulia G. Birulina - Candidate of Biology, Associate Professor, Department of Biophysics and Functional Diagnostics, Federal State Budgetary Educational Institution of Higher Education “Siberian State Medical University”, Ministry of Healthcare of the Russian Federation.

Moskovskiy trakt 2, Tomsk, 634050

tel.: (3822) 90-11-01 (add. 1912)


Competing Interests:

The authors declare the absence of obvious and potential conflicts of interest related to the content of this article



T. V. Saprina
Federal State Budgetary Educational Institution of Higher Education “Siberian State Medical University”, Ministry of Healthcare of the Russian Federation
Russian Federation

Tatyana V. Saprina - Doctor of Medicine, Associate Professor, Head of the Endocrinology Department of Clinics, Professor, Department of Faculty Therapy with a Course of Clinical Pharmacology, Federal State Budgetary Educational Institution of Higher Education “Siberian State Medical University”, Ministry of Healthcare of the Russian Federation.

Moskovskiy trakt 2,  Tomsk, 634050

tel.: (3822) 90-11-01 (add. 1900)


Competing Interests:

The authors declare the absence of obvious and potential conflicts of interest related to the content of this article



I. E. Esimova
Federal State Budgetary Educational Institution of Higher Education “Siberian State Medical University”, Ministry of Healthcare of the Russian Federation
Russian Federation

Irina E. Esimova - Doctor of Medicine, Senior Lecturer, Department of Biochemistry and Molecular Biology with a course of clinical laboratory diagnostics, Senior Lecturer, Department of Biology and Genetics, Federal State Budgetary Educational Institution of Higher Education “Siberian State Medical University”, Ministry of Healthcare of the Russian Federation.

Moskovskiy trakt 2,  Tomsk, 634050

tel.: (3822) 90-11-01 (add. 1946)


Competing Interests:

The authors declare the absence of obvious and potential conflicts of interest related to the content of this article



I. A. Osikhov
Federal State Budgetary Educational Institution of Higher Education “Siberian State Medical University”, Ministry of Healthcare of the Russian Federation
Russian Federation

Ivan A. Osikhov - Candidate of Medicine, Associate Professor, Department of Biology and Genetics, Federal State Budgetary Educational Institution of Higher Education “Siberian State Medical University”, Ministry of Healthcare of the Russian Federation.

Moskovskiy trakt 2,  Tomsk, 634050

tel.: (3822) 90-11-01 (add. 1946)


Competing Interests:

The authors declare the absence of obvious and potential conflicts of interest related to the content of this article



References

1. Jussi K. Kuopio Ischemic Heart Disease Risk Factor Study. In: Gell-man M., Turner J., eds. Encyclopedia of behavioral medicine. N.Y.: Springer; 2016. DOI: 10.1007/978-1-4614-6439-6_328-2.

2. Laakso M., Kuusisto J., Stancakova A. et al. The metabolic syndrome in men study: a resource for studies of metabolic and cardiovascular diseases. J. Lipid. Res. 2017; 58 (3): 481-493. DOI: 10.1194/jr.O072629.

3. Richardson T.G., Sanderson E., Palmer T.M. et al. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis. PLoS Med. 2020; 17 (3): e1003062. DOI: 10.1371/journal.pmed.1003062.

4. Holmes M.V., Asselbergs F.W., Palmer T.M. et al. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J. 2015; 36 (9): 539-550. DOI: 10.1093/eurheartj/eht571.

5. Virtanen H.E.K., Koskinen T.T., Voutilainen S. et al. Intake of different dietary proteins and risk of type 2 diabetes in men: the Kuopio Ischemic Heart Disease Risk Factor Study. Br. J. Nutr. 2017; 117 (6): 882-893. DOI: 10.1017/S0007114517000745.

6. Yeh H.C., Punjabi N.M., Wang N.Y. et al. Cross-sectional and prospective study of lung function in adults with type 2 diabetes: the Atherosclerosis Risk In Communities (ARIC) study. Diabetes Care. 2008; 31 (4): 741-746. DOI: 10.2337/dc07-1464.

7. Koton S., Sang Y., Schneider A.L.C. et al. Trends in stroke incidence rates in older US adults: an update from the Atherosclerosis Risk In Communities (ARIC) cohort study. JAMA Neurol. 2020; 77 (1): 109-113. DOI: 10.1001/jamaneurol.2019.3258.

8. Mansour O., Golden S.H., Yeh H.C. Disparities in mortality among adults with and without diabetes by sex and race. J. Diabetes Complications. 2020; 34 (3): 107496. DOI: 10.1016/j.jdiacomp.2019.107496.

9. Boriek A.M., Lopez M.A., Velasco C. et al. Obesity modulates diaphragm curvature in subjects with and without COPD. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017; 313 (5): R620-629. DOI: 10.1152/ajpregu.00173.2017.

10. Dixon A.E., Peters U. The effect of obesity on lung function. Expert. Rev. Respir. Med. 2018; 12 (9): 755-767. DOI: 10.1080/17476348.2018.1506331.

11. Budnevskiy A.V., Malysh E.Yu., Ovsyannikov E.S., Drobysheva E.S. [Asthma and metabolic syndrome: clinical and pathogenetic relationships]. Terapevticheskiy arkhiv. 2015; 87 (10): 110-114. DOI: 10.17116/terarkh20158710110-114 (in Russian).

12. Budnevskiy A.V., Ovsyannikov E.S., La-bzhaniya N.B. [Chronic obstructive pulmonary disease concurrent with metabolic syndrome: pathophysiological and clinical features]. Terapevticheskiy arkhiv. 2017; 89 (1): 123-127. DOI: 10.17116/terarkh2017891123-127 (in Russian).

13. Choi H.S., Rhee C.K., Park Y.B. et al. Metabolic syndrome in early chronic obstructive pulmonary disease: gender differences and impact on exacerbation and medical costs. Int. J. Chron. Obstruct. Pulmon. Dis. 2019; 14: 2873-2883. DOI: 10.2147/COPD.S228497.

14. Kolahian S., Leiss V., Nurnberg B. Diabetic lung disease: fact or fiction? Rev. Endocr. Metab. Disord. 2019; 20 (3): 303-319. DOI: 10.1007/s11154-019-09516-w.

15. Baffi C.W., Wood L., Winnica D. et al. Metabolic syndrome and the lung. Chest. 2016; 149 (6): 1525-1534. DOI: 10.1016/j.chest.2015.12.034.

16. Kuziemski K., Specjalski K., Jassem E. Diabetic pulmonary microangiopathy - fact or fiction? Endokrynol. Pol. 2011; 62 (2): 171-176.

17. Yang J., Xue Q., Miao L., Cai L. Pulmonary fibrosis: a possible diabetic complication. Diabetes Metab. Res. Rev. 2011; 27 (4): 311-317. DOI: 10.1002/dmrr.1175.

18. Burgstaller G., Oehrle B., Gerckens M. et al. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur. Respir. J. 2017; 50 (1): 1601805. DOI: 10.1183/13993003.01805-2016.

19. Hu Y., Ma Z., Guo Z. et al. Type 1 diabetes mellitus is an independent risk factor for pulmonary fibrosis. Cell. Biochem. Biophys. 2014; 70 (2): 1385-1391. DOI: 10.1007/s12013-014-0068-4.

20. Nie Z., Jacoby D.B., Fryer A.D. Hyperinsulinemia potentiates airway responsiveness to parasympathetic nerve stimulation in obese rats. Am. J. Respir. Cell. Mol. Biol. 2014; 51 (2): 251-261. DOI: 10.1165/rcmb.2013-0452OC.

21. Singh S., Bodas M., Bhatraju N.K. et al. Hyperinsulinemia adversely affects lung structure and function. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016; 310 (9): L837-845. DOI: 10.1152/ajplung.00091.2015.

22. Wang Z., Li W., Guo Q. et al. Insulin-like growth factor-1 signaling in lung development and inflammatory lung diseases. Biomed. Res. Int. 2018; 6057589. DOI: 10.1155/2018/6057589.

23. Berair R., Saunders R., Brightling C.E. Origins of increased airway smooth muscle mass in asthma. BMC Med. 2013; 11: 145. DOI: 10.1186/1741-7015-11-145.

24. Pain M., Bermudez O., Lacoste P. et al. Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype. Eur. Respir. Rev. 2014; 23 (131): 118-130. DOI: 10.1183/09059180.00004413.

25. Zheng H., Wu J., Jin Z., Yan L.J. Potential biochemical mechanisms of lung injury in diabetes. Aging Dis. 2017; 8 (1): 7-16. DOI: 10.14336/AD.2016.0627.

26. Zheng H., Wu J., Jin Z., Yan L.J. Protein modifications as manifestations of hyperglycemic glucotoxicity in diabetes and its complications. Biochem. Insights. 2016; 9: 1-9. DOI: 10.4137/BCI.S36141.

27. Green C.E. Lung function and endothelial dysfunction: is there a relationship without the presence of lung disease? Respirology. 2020; 25 (1): 49-50. DOI: 10.1111/resp.13573.

28. Hancox R.J., Thomas L., Williams M.J.A., Sears M.R. Associations between lung and endothelial function in early middle age. Respirol-ogy. 2020; 25 (1): 89-96. DOI: 10.1111/resp.13556.

29. Wheatley C.M., Baldi J.C., Cassuto N.A. et al. Glycemic control influences lung membrane diffusion and oxygen saturation in exercise-trained subjects with type 1 diabetes: alveolar-capillary membrane conductance in type 1 diabetes. Eur. J. Appl. Physiol. 2011; 111 (3): 567-578. DOI: 10.1007/s00421-010-1663-8.

30. Wasserman D.H., Wang T.J., Brown N.J. The vasculature in prediabetes. Circ. Res. 2018; 122 (8): 1135-1150. DOI: 10.1161/CIRCRE-SAHA.118.311912.

31. Wu X., Lu W., He M. et al. Structural and functional definition of the pulmonary vein system in a chronic hypoxia-induced pulmonary hypertension rat model. Am. J. Physiol. Cell. Physiol. 2020; 318 (3): C555-569. DOI: 10.1152/ajpcell.00289.2019.

32. Grandl G., Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin. Immunopathol. 2018; 40 (2): 215-224. DOI: 10.1007/s00281-017-0666-5.

33. Santilli F., Vazzana N., Liani R. et al. Platelet activation in obesity and metabolic syndrome. Obes. Rev. 2012; 13 (1): 27-42. DOI: 10.1111/j.1467-789X.2011.00930.x.

34. Lei H., Li H., Tian L. et al. Icariside II ameliorates endothelial dysfunction by regulating the MAPK pathway via miR-126/SPRED1 in diabetic human cavernous endothelial cells. Drug. Des. Devel. Ther. 2018; 12: 1743-1751. DOI: 10.2147/DDDT.S166734.

35. Peters U., Suratt B.T., Bates J.H.T. et al. Obesity and lung disease. Chest. 2018; 153 (3): 702-709. DOI: 10.1016/j.chest.2017.07.010.

36. Melo L.C., Silva M.A., Calles A.C. Obesity and lung function: a systematic review. Einstein (Sao Paulo). 2014; 12 (1):120-125. DOI: 10.1590/s1679-45082014rw2691.

37. Huang L., Ye Z., Lu J. et al. Effects of fat distribution on lung function in young adults. J. Physiol. Anthropol. 2019; 38 (1): 7. DOI: 10.1186/s40101-019-0198-x.

38. He S., Yang J., Li X. et al. Visceral adiposity index is associated with lung function impairment: a population-based study. Respir. Res. 2021; 22 (1): 2. DOI: 10.1186/s12931-020-01599-3.

39. Agrawal M., Kern P.A., Nikolajczyk B.S. The immune system in obesity: developing paradigms amidst inconvenient truths. Curr. Diab. Rep. 2017; 17 (10): 87. DOI: 10.1007/s11892-017-0917-9.

40. McCracken E., Monaghan M., Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018; 36 (1): 14-20. DOI: 10.1016/j.clindermatol.2017.09.004.

41. Kryukov N.N., Ginzburg M.M., Kiseleva E.V. [Sovremennyy vzglyad na rol' asepticheskogo vospaleniya zhirovoy tkani v geneze ozhireniya i metabolicheskogo sindroma]. Arterial'naya gipertenziya. 2013; 19 (4): 305-310 (in Russian).

42. Suzukawa M., Koketsu R., Baba S. et al. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015; 309: L801-811. DOI: 10.1152/ajplung.00365.2014.

43. Hao W., Wang J., Zhang Y. et al. Leptin positively regulates MUC5AC production and secretion induced by interleukin-13 in human bronchial epithelial cells. Biochem. Biophys. Res. Commun. 2017; 493: 979-984. DOI: 10.1016/j.bbrc.2017.09.106.

44. La Cava A. Leptin in inflammation and autoimmunity. Cytokine. 2017; 98: 51-58. DOI: 10.1016/j.cyto.2016.10.011.

45. Hsu P.S., Lin C.M., Chang J.F. et al. Participation of NADPH oxidase-related reactive oxygen species in leptin-promoted pulmonary inflammation: regulation of cPLA2a and COX-2 expression. Int. J. Mol. Sci. 2019; 20 (5): 1078. DOI: 10.3390/ijms20051078.


Supplementary files

Review

For citations:


Voronkova O.V., Birulina Yu.G., Saprina T.V., Esimova I.E., Osikhov I.A. The role of metabolic syndrome factors in the pathogenesis of respiratory disorders. PULMONOLOGIYA. 2023;33(4):552-558. (In Russ.) https://doi.org/10.18093/0869-0189-2022-2419

Views: 1051


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)