1. Calder P.C., Carr A.C., Gombart A.F., Eggersdorfer M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients. 2020; 12 (4): 1181. https://doi.org/10.3390/nu12041181.
2. Gromova O.A., Torshin I.Yu., Gusev E.I. [Synergistic neuroprotective effects of thiamine, pyridoxine and cyanocobalamin on the level of human proteome]. Pharmacokinetics and rharmacodynamics. 2017; (1): 40-51. Available at: https://www.pharmacokinetica.ru/jour/article/view/7/7 (in Russian).
3. Shakoor H., Feehan J., Mikkelsen K. et al. Be well: A potential role for vitamin B in COVID-19. Maturitas. 2021; 144: 108-111. https://doi.org/10.1016/j.maturitas.2020.08.007.
4. Hamer D.H., Sempertegui F., Estrella B. et al. Micronutrient deficiencies are associated with impaired immune response and higher burden of respiratory infections in elderly Ecuadorians. J. Nutr. 2009; 139 (1): 113-119. https://doi.org/10.3945/jn.108.095091.
5. Thaller G. [Vitamin B 12 in the prevention of influenza]. Munch Med. Wochenschr. 1957; 99 (52): 1977-1978 (in German).
6. Axelrod A.E., Hopper S. Effects of pantothenic acid, pyridoxine and thiamine deficiencies upon antibody formation to influenza virus PR-8 in rats. J. Nutr. 1960; 72 (3): 325-330. https://doi.org/10.1093/jn/72.3.325.
7. Chang H.Y., Tang F.Y., Chen D.Y. et al. Clinical use of cyclooxygenase inhibitors impairs vitamin B-6 metabolism. Am. J. Clin. Nutr. 2013; 98 (6): 1440-1449. https://doi.org/10.3945/ajcn.113.064477.
8. Gromova O.A., Rebrov V.G. [Vitamins, macro- and microelements. Educational programs of the RSC of the UNESCO Institute of Microelements]. Moscow: GEOTAR-Media; 2008 (in Russian).
9. Gromova O.A., Torshin I.Yu., Shapovalova Yu.O. et al. [COVID-19 and iron deficiency anemia: relationships of pathogenesis and therapy]. Akusherstvo, ginekologiya i reproduktsiya. 2020; 14 (5): 654-665. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.179 (in Russian).
10. Maiorova L.A., Erokhina S.I., Pisani M. et al. Encapsulation of vitamin B 12 into nanoengineered capsules and soft matter nanosystems for targeted delivery. Colloids Surf. B Biointerfaces. 2019; 182: 110366. https://doi.org/10.1016/j.colsurfb.2019.110366.
11. Narayanan N., Nair D.T. Vitamin B 12 may inhibit RNA-dependent-RNA polymerase activity of nsp12 from the SARS-CoV-2 virus. IUBMB Life. 2020; 72 (10): 2112-2120. https://doi.org/10.1002/iub.2359.
12. Barbieri A., Robinson N., Palma G. et al. Can beta-2-adrenergic pathway be a new target to combat SARS-CoV-2 hyperinflammatory syndrome? - Lessons learned from cancer. Front. Immunol. 2020; 11: 588724. https://doi.org/10.3389/fimmu.2020.588724.
13. Vatsalya V., Li F., Frimodig J.C. et al. Therapeutic prospects for Th-17 cell immune storm syndrome and neurological symptoms in COVID-19: thiamine efficacy and safety, in-vitro evidence and pharmacokinetic profile. medRxiv. 2020: 2020.08.23.20177501 [Preprint. Posted: August 25, 2020]. https://doi.org/10.1101/2020.08.23.20177501.
14. Torshin I.Yu., Gromova O.A. [Micronutrients against coronaviruses]. Chuchalin A.G. (ed.). Moscow: GEOTAR-Media; 2020 (in Russian).
15. Uckun F.M., Carlson J., Orhan C. et al. Rejuveinix shows a favorable clinical safety profile in human subjects and exhibits potent preclinical protective activity in the lipopolysaccharide-galactosamine mouse model of acute respiratory distress syndrome and multi-organ failure. Front. Pharmacol. 2020; 11: 594321. https://doi.org/10.3389/fphar.2020.594321.
16. Procter B.C., Ross C., Pickard V. et al. Clinical outcomes after early ambulatory multidrug therapy for high-risk SARS-CoV-2 (COVID-19) infection. Rev. Cardiovasc. Med. 2020; 21 (4): 611-614. https://doi.org/10.31083/j.rcm.2020.04.260.
17. Tan C.W., Ho L.P., Kalimuddin S. et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B 12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition. 2020; 79-80: 111017. https://doi.org/10.1016/j.nut.2020.111017.
18. Gromova O.A., Torshin I.Yu., Lisitsyna E.Yu. [Hepatoprotective properties of vitamins in preconception and during pregnancy]. Zemskiy vrach. 2011; (4): 23-28. Available at: https://cyberleninka.ru/article/n/gepatoprotektornye-svoystva-vitaminov-v-prekontseptsii-i-pri-beremennosti/viewer (in Russian).
19. Hernandez-Vazquez A.J., Garcia-Sanchez J.A., Moreno-Arriola E. et al. Thiamine deprivation produces a liver ATP deficit and metabolic and genomic effects in mice: Findings are parallel to those of biotin deficiency and have implications for energy disorders. J. Nutrigenet. Nutrigenomics. 2016; 9 (5-6): 287-299. https://doi.org/10.1159/000456663.
20. Levy S., Herve C., Delacoux E., Erlinger S. Thiamine deficiency in hepatitis C virus and alcohol-related liver diseases. Dig. Dis. Sci. 2002; 47 (3): 543-548. https://doi.org/10.1023/a:1017907817423.
21. Butterworth R.F. Thiamine deficiency-related brain dysfunction in chronic liver failure. Metab. Brain. Dis. 2009; 24 (1): 189-196. https://doi.org/10.1007/s11011-008-9129-y.
22. Wang C., Liang J., Zhang C. et al. Effect of ascorbic Acid and thiamine supplementation at different concentrations on lead toxicity in liver. Ann. Occup. Hyg. 2007; 51 (6): 563-569. https://doi.org/10.1093/annhyg/mem036.
23. Zhao M., Ralat M.A., da Silva V. et al. Vitamin B-6 restriction impairs fatty acid synthesis in cultured human hepatoma (HepG2) cells. Am. J. Physiol. Endocrinol. Metab. 2013; 304 (4): e342-351. https://doi.org/10.1152/ajpendo.00359.2012.
24. Cheng C.P., Chen C.H., Kuo C.S. et al. Dietary choline and folate relationships with serum hepatic inflammatory injury markers in Taiwanese adults. Asia Pac. J. Clin. Nutr. 2017; 26 (4): 642-649. https://doi.org/10.6133/apjcn.082016.03.
25. Hirsch S., Poniachick J., Avendano M. et al. Serum folate and homocysteine levels in obese females with non-alcoholic fatty liver. Nutrition. 2005; 21 (2): 137-141. https://doi.org/10.1016/j.nut.2004.03.022.
26. Harb Z., Deckert V., Bressenot A.M. et al. The deficit in folate and vitamin B 12 triggers liver macrovesicular steatosis and inflammation in rats with dextran sodium sulfate-induced colitis. J. Nutr. Biochem. 2020; 84: 108415. https://doi.org/10.1016/j.jnutbio.2020.108415.
27. Veber D., Mutti E., Tacchini L. et al. Indirect down-regulation of nuclear NF-kappaB levels by cobalamin in the spinal cord and liver of the rat. J. Neurosci. Res. 2008; 86 (6): 1380-1387. https://doi.org/10.1002/jnr.21599.
28. Isoda K., Kagaya N., Akamatsu S. et al. Hepatoprotective effect of vitamin B 12 on dimethylnitrosamine-induced liver injury. Biol. Pharm. Bull. 2008; 31 (2): 309-311. https://doi.org/10.1248/bpb.31.309.
29. Xia M.F., Bian H., Zhu X.P. et al. Serum folic acid levels are associated with the presence and severity of liver steatosis in Chinese adults. Clin. Nutr. 2018; 37 (5): 1752-1758. https://doi.org/10.1016/j.clnu.2017.06.021.
30. Koplay M., Gulcan E., Ozkan F. Association between serum vitamin B 12 levels and the degree of steatosis in patients with nonalcoholic fatty liver disease. J. Investig. Med. 2011; 59 (7): 1137-1140. https://doi.org/10.2310/JIM.0b013e31822a29f5.
31. van Kempen T.A.T.G., Deixler E. SARS-CoV-2: influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of COVID-19. Am. J. Physiol. Endocrinol. Metab. 2021; 320 (1): e2-6. https://doi.org/10.1152/ajpendo.00474.2020.
32. Sato K., Morofuji Y., Horie N. et al. Hyperhomocysteinemia causes severe intraoperative thrombotic tendency in superficial temporal artery-middle cerebral artery bypass. J. Stroke Cerebrovasc. Dis. 2020; 29 (5): 104633. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104633.
33. Zhou K., Zhao R., Geng Z. et al. Association between B-group vitamins and venous thrombosis: systematic review and meta-analysis of epidemiological studies. J. Thromb. Thrombolysis. 2012; 34 (4): 459-467. https://doi.org/10.1007/s11239-012-0759-x.
34. Taheraghdam A.A., Dalirakbari N., Khalili M. et al. Hyperhomocysteinemia, low vitamin B12, and low folic acid: Are risk factors of cerebral vascular thrombosis in northwest Iran? J. Res. Med. Sci. 2016; 21: 16. https://doi.org/10.4103/1735-1995.178755.
35. Kotwal J., Kotwal A., Bhalla S. et al. Effectiveness of homocysteine lowering vitamins in prevention of thrombotic tendency at high altitude area: A randomized field trial. Thromb. Res. 2015; 136 (4): 758-762. https://doi.org/10.1016/j.thromres.2015.08.001.
36. Pereira E.N.G.D.S., Silvares R.R., Flores E.E.I. et al. Pyridoxamine improves metabolic and microcirculatory complications associated with nonalcoholic fatty liver disease. Microcirculation. 2020; 27 (3): e12603. https://doi.org/10.1111/micc.12603.
37. Vučković B.A., van Rein N., Cannegieter S.C. et al. Vitamin supplementation on the risk of venous thrombosis: results from the MEGA case-control study. Am. J. Clin. Nutr. 2015; 101 (3): 606-612. https://doi.org/10.3945/ajcn.114.095398.
38. Baghizadeh Fini M. Oral saliva and COVID-19. Oral Oncol. 2020; 108: 104821. https://doi.org/10.1016/j.oraloncology.2020.104821.
39. Wee A.K.H. COVID-19's toll on the elderly and those with diabetes mellitus - Is vitamin B 12 deficiency an accomplice? Med. Hypotheses. 2021; 146: 110374. https://doi.org/10.1016/j.mehy.2020.110374.
40. Gonçalves S.E.A.B., Gonçalves T.J.M., Guarnieri A. et al. Association between thiamine deficiency and hyperlactatemia among critically ill patients with diabetes infected by SARS-CoV-2. J. Diabetes. 2021; 13 (5): 413-419. https://doi.org/10.1111/1753-0407.13156.
41. Li W., Li K., Zhang N. et al. [Differential diagnosis of high altitude pulmonary edema and COVID-19 with computed tomography feature]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020; 37 (6): 1031-1036. https://doi.org/10.7507/1001-5515.202007043 (in Chinese).
42. Maggiorini M. [Prevention and therapy of altitude sickness]. Ther. Umsch. 1993; 50 (4): 221-227 (in German).
43. Schöni M.H. [Inhibition of renal carbonic anhydrase as a respiratory stimulant - an obsolete indication?] Ther. Umsch. 2000; 57 (6): 351-354. https://doi.org/10.1024/0040-5930.57.6.351 (in German).
44. Williams M.H. Vitamin supplementation and athletic performance. Int. J. Vitam. Nutr. Res. Suppl. 1989; 30: 163-191.
45. Harris S.C., Ivy A.C., Friedemann T.E. Work at high altitude; the effect of training and dietary restriction of thiamin and riboflavin on altitude tolerance and physical efficiency for work at a simulated altitude of 15,000 feet. Q. Bull. Northwest Univ. Med. Sch. 1947 Summer; 21 (2): 135-151.
46. Özdemir Z.Ö., Şentürk M., Ekinci D. Inhibition of mammalian carbonic anhydrase isoforms I, II and VI with thiamine and thiamine-like molecules. J. Enzyme Inhib. Med. Chem. 2013; 28 (2): 316-319. https://doi.org/10.3109/14756366.2011.637200.
47. McPeake J.M., Shaw M., O'Neill A. et al. Do alcohol use disorders impact on long term outcomes from intensive care? Crit. Care. 2015; 19 (1): 185. https://doi.org/10.1186/s13054-015-0909-6.
48. Lima L.F., Leite H.P., Taddei J.A. Low blood thiamine concentrations in children upon admission to the intensive care unit: risk factors and prognostic significance. Am. J. Clin. Nutr. 2011; 93 (1): 57-61. https://doi.org/10.3945/ajcn.2009.29078.
49. Woolum J.A., Abner E.L., Kelly A. et al. Effect of thiamine administration on lactate clearance and mortality in patients with septic shock. Crit. Care Med. 2018; 46 (11): 1747-1752. https://doi.org/10.1097/CCM.0000000000003311.
50. Byerly S., Parreco J.P., Soe-Lin H. et al. Vitamin C and thiamine are associated with lower mortality in sepsis. J. Trauma Acute Care Surg. 2020; 89 (1): 111-117. https://doi.org/10.1097/TA.0000000000002613.
51. Marik P.E., Khangoora V., Rivera R. et al. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017; 151 (6): 1229-1238. https://doi.org/10.1016/j.chest.2016.11.036.
52. Derin S., Koseoglu S., Sahin C., Sahan M. Effect of vitamin B12 deficiency on olfactory function. Int. Forum Allergy Rhinol. 2016; 6 (10): 1051-1055. https://doi.org/10.1002/alr.21790.
53. Gromova O.A., Torshin I.Yu., Semenov V.A. et al. [Direct and indirect neurological manifestations of COVID-19]. Zhurnal nevrologii i psikhiatrii im. S.S.Korsakova. 2020; 120 (11): 11-21. https://doi.org/10.17116/jnevro202012011111 (in Russian).
54. Zaric D., Christiansen C., Pace N.L., Punjasawadwong Y. Transient neurologic symptoms (TNS) following spinal anaesthesia with lidocaine versus other local anaesthetics. Cochrane Database Syst. Rev. 2003; (2): CD003006. https://doi.org/10.1002/14651858.CD003006.