Preview

PULMONOLOGIYA

Advanced search

Respiratory pathophysiology in obesity

https://doi.org/10.18093/0869-0189-2021-31-6-808-815

Abstract

In the modern world, obesity is the most important medical and social problem that requires an interdisciplinary approach. Many diseases of the respiratory system are caused by obesity.

Aim. The review analyzes scientific sources on respiratory disorders in patients with obesity from the open-access electronic libraries PubMed and eLibrary published in the last 15 years.

Methods. A comparative systematical assessment of the results of these studies was carried out. The mechanical effects of excess body weight on the respiratory apparatus have been singled out. The current views about cellular and humoral effects of adipose tissue on the development of respiratory pathology have been given.

Conclusion. The analysis results present evidence of the multifactorial negative influence of excessive body weight on the respiratory system. Some aspects of the role of obesity in the development of respiratory disorders require further study. Understanding the pathogenic mechanisms behind the influence of obesity on the respiratory apparatus is essential for developing the patient management strategy.

About the Author

Victoria A. Sergeeva
Federal State Educational Institution of High Education Saratov State Medical University named after V.I. Razumovsky, Healthcare Ministry of Russian Federation
Russian Federation

Candidate of Medicine, assistant professor of the department of Therapy with Courses of Cardiology, Functional Diagnostics and Geriatrics.

Bolshaya Kazachia ul. 112, Saratov, 410012: tel.: (8452) 51-15-34


Competing Interests:

no



References

1. World Health Organization. Fact sheet: Obesity and overweight. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/obesity-and-overweight [Accessed: November 04, 2020].

2. Diagnostics, treatment, prevention of obesity and associated diseases: national clinical guidelines]. Saint-Petersburg; 2017. Available at: https://scardio.ru/content/Guidelines/project/Ozhirenie_klin_rek_proekt.pdf [Accessed: November 04, 2020] (in Russian).

3. Burwell C.S., Robin E.D., Whaley R.D., Bickelmann A.G. Extreme obesity associated with alveolar hypoventilation - a Pickwickian syndrome. 1956. Obes. Res. 1994; 2 (4): 390-397. DOI: 10.1002/j.1550-8528.1994.tb00084.x.

4. Dixon A.E., Peters U. The effect of obesity on lung function. Expert Rev. Respir. Med. 2018; 12 (9): 755-767. DOI: 10.1080/17476348.2018.1506331.

5. Chiumello D., Colombo A., Algieri I. et al. Effect of body mass index in acute respiratory distress syndrome. Br. J. Anaesth. 2016; 116 (1): 113-121. DOI: 10.1093/bja/aev378.

6. Zewari S., Vos P., van den Elshout F. et al. Obesity in COPD: revealed and unrevealed issues. COPD. 2017; 14 (6): 663-673. DOI: 10.1080/15412555.2017.1383978.

7. Canoy D., Luben R., Welch A. et al. Abdominal obesity and respiratory function in men and women in the EPIC-Norfolk study, united kingdom. Am. J. Epidemiol. 2004; 159 (12): 1140-1149. DOI: 10.1093/aje/kwh155.

8. Wannamethee S.G., Shaper A.G., Whincup P.H. Body fat distribution, body composition, and respiratory function in elderly men. Am. J. Clin. Nutr. 2005; 82 (5): 996-1003. DOI: 10.1093/ajcn/82.5.996.

9. Jones R.L., Nzekwu M.M. The effects ofbody mass index on lung volumes. Chest. 2006; 130 (3): 827-833. DOI: 10.1378/chest.130.3.827.

10. Ceylan E., Comlekigi A., Akkoglu A. et al. The effects of body fat distribution on pulmonary function tests in overweight and obese. South. Med. J. 2009; 102 (1): 30-35. DOI: 10.1097/SMJ.0b013e31818c9585.

11. Chen Y., Rennie D., Cormier Y.F., Dosman J.A. Waist circumference is associated with pulmonary function in normal-weight, overweight, and obese subjects. Am. J. Clin. Nutr. 2007; 85 (1): 35-39. DOI: 10.1093/ajcn/85.1.35.

12. Thyagarajan B., Jacobs D.R. Jr., Apostol G.G. et al. Longitudinal association of body mass index with lung function: the CARDIA study. Respir. Res. 2008; 9 (1): 31. DOI: 10.1186/1465-9921-9-31.

13. Steele R.M, Finucane F.M., Griffin S.J. et al. Obesity is associated with altered lung function independently of physical activity and fitness. Obesity (Silver Spring). 2009; 17 (3): 578-584. DOI: 10.1038/oby.2008.584.

14. Gabrielsen A.M., Lund M.B., Kongerund J. et al. The relationship between anthropometric measures, blood gases, and lung function in morbidly obese white subjects. Obes. Surg. 2011; 21 (4): 485-491. DOI: 10.1007/s11695-010-0306-9.

15. Littleton S.W., Tulaimat A. The effects of obesity on lung volumes and oxygenation. Respir. Med. 2017; 124: 15-20. DOI: 10.1016/j.rmed.2017.01.004.

16. Davidovich V.V. Funkcija vneshnego dyhanija u pacientov s morbid-nym ozhireniem. Voennaya meditsina. 2013; (3): 34-38. Available at: https://www.bsmu.by/militarymedicine/category45/ (in Russian).

17. Zhou L.N., Wang Q., Gu C.J. et al. Sex differences in the effects of obesity on lung volume. Am. J. Med. Sci. 2017; 353 (3): 224-229. DOI: 10.1016/j.amjms.2016.12.003.

18. Mehari A., Afreen S., Ngwa J. et al. Obesity and pulmonary function in African Americans. PLoS One. 2015; 10 (10): e0140610. DOI: 10.1371/journal.pone.0140610.

19. Abramson M.J., Kaushik S., Benke G.P. et al. Symptoms and lung function decline in a middle-aged cohort of males and females in Australia. Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11: 1097-1103. DOI: 10.2147/COPD.S103817.

20. Al Ghobain M. The effect of obesity on spirometry tests among healthy non-smoking adults. BMCPulm. Med. 2012; 12: 10. DOI: 10.1186/1471-2466-12-10.

21. Do J.G., Park C.H., Lee Y.T., Yoon K.J. Association between underweight and pulmonary function in 282,135 healthy adults: A cross-sectional study in Korean population. Sci. Rep. 2019; 9 (1): 14308. DOI: 10.1038/s41598-019-50488-3.

22. Unterborn J. Pulmonary function testing in obesity, pregnancy, and extremes of body habitus. Clin. Chest Med. 2001; 22 (4): 759-767. DOI: 10.1016/s0272-5231(05)70064-2.

23. Brazzale D.J., Pretto J.J., Schachter L.M. Optimizing respiratory function assessments to elucidate the impact of obesity on respiratory health. Respirology. 2015; 20 (5): 715-721. DOI: 10.1111/resp.12563.

24. Salome C.M., King G.G., Berend N. Physiology of obesity and effects on lung function. J. Appl. Physiol. (1985). 2010; 108 (1): 206-211. DOI: 10.1152/japplphysiol.00694.2009.

25. Manuel A.R., Hart N., Stradling J.R. Correlates of obesity-related chronic ventilatory failure. BMJ Open Respir. Res. 2016; 3 (1): e000110. DOI: 10.1136/bmjresp-2015-000110.

26. Steier J., Jolley C.J., Seymour J. et al. Neural respiratory drive in obesity. Thorax. 2009; 64 (8): 719-725. DOI: 10.1136/thx.2008.109728.

27. de Lucas Ramos P., Rodriguez Gonzdlez-Moro J.M., Rubio Socorro.Y. [Obesity and lung function]. Arch. Bronconeumol. 2004; 40 (Suppl. 5): 27-31. DOI: 10.1157/13077885 (in Spanish).

28. Chlif M., Keochkerian D., Choquet D. et al. Effects of obesity on breathing pattern, ventilatory neural drive and mechanics. Respir. Physiol. Neurobiol. 2009; 168 (3): 198-202. DOI: 10.1016/j.resp.2009.06.012.

29. Sharp J.T., Druz W.S., Kondragunta V.R. Diaphragmatic responses to body position changes in obese patients with obstructive sleep apnea. Am. Rev. Respir. Dis. 1986; 133 (1): 32-37. DOI: 10.1164/arrd.1986.133.1.32.

30. Pellegrino R., Gobbi A., Antonelli A. et al. Ventilation heterogeneity in obesity. J. Appl. Physiol. (1985). 2014; 116 (9):1175-1181. DOI: 10.1152/japplphysiol.01339.2013.

31. Saydain G., Beck K.C., Decker P.A et al. Clinical significance of elevated diffusion capacity. Chest. 2004; 125 (2): 446-452. DOI: 10.1378/chest.125.2.446.

32. Enache I., Oswald-Mammosser M., Scarfone S. et al. Impact of altered alveolar volume on the diffusing capacity of the lung for carbon monoxide in obesity. Respiration. 2011; 81 (3): 217-222. DOI: 10.1159/000314585.

33. Sharp J.T., Henry J.P., Sweany S.K. et al. The total work of breathing in normal and obese men. J. Clin. Invest. 1964; 43 (4): 728-739. DOI: 10.1172/JCI104957.

34. Weisberg S.P., McCann D., Desai M. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 2003; 112 (12): 1796-1808. DOI: 10.1172/JCI19246.

35. Periyalil H.A., Wood L.G., Wright T.A. et al. Obese asthmatics are characterized by altered adipose tissue macrophage activation. Clin. Exp. Allergy. 2018; 48 (6): 641-649. DOI: 10.1111/cea.13109.

36. Poglio S., De Toni-Costes F., Arnaud E. et al. Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells. 2010; 28 (11): 2065-2072. DOI: 10.1002/stem.523.

37. Liu J., Divoux A., Sun J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat. Med. 2009; 8; 15 (8): 940-945. DOI: 10.1038/nm.1994.

38. Sideleva O., Suratt B.T., Black K.E. et al. Obesity and asthma: an inflammatory disease of adipose tissue not the airway. Am. J. Re-spir. Crit. Care Med. 2012; 186 (7): 598-605. DOI: 10.1164/rc-cm.201203-0573OC.

39. Poulain M., Doucet M., Drapeau V et al. Metabolic and inflammatory profile in obese patients with chronic obstructive pulmonary disease. Chron. Respir. Dis. 2008; 5 (1): 35-41. DOI: 10.1177/1479972307087205.

40. Chen H., Zhang J.P., Huang H. et al. Leptin promotes fetal lung maturity and upregulates SP-A expression in pulmonary alveoli type-II epithelial cells involving TTF-1 activation. PloS One. 2013; 8 (7): e69297. DOI: 10.1371/journal.pone.0069297.

41. Yao Q., Pho H., Kirkness J. et al. Localizing effects of leptin on upper airway and respiratory control during sleep. Sleep. 2016; 39 (5): 1097-1106. DOI: 10.5665/sleep.5762.

42. Arteaga-Solis E., Zee T., Emala C.W. et al. Inhibition of leptin regulation of parasympathetic signaling as a cause of extreme body weight-associated asthma. Cell Metab. 2013; 17 (1): 35-48. DOI: 10.1016/j.cmet.2012.12.004.

43. Hukshorn C.J., Lindeman J.H., Toet K.H. et al. Leptin and the proinflammatory state associated with human obesity. J. Clin. Endocrinol. Metab. 2004; 89 (4): 1773-1778. DOI: 10.1210/jc.2003-030803.

44. Krommidas G., Kostikas K., Papatheodorou G. et al. Plasma leptin and adiponectin in COPD exacerbations: associations with inflammatory biomarkers. Respir. Med. 2010; 104 (1): 40-46. DOI: 10.1016/j.rmed.2009.08.012.

45. Medoff B.D., Okamoto Y., Leyton P. et al. Adiponectin deficiency increases allergic airway inflammation and pulmonary vascular remodeling. Am. J. Respir. Cell Mol. Biol. 2009; 41 (4): 397-406. DOI: 10.1165/rcmb.2008-0415OC.

46. Ouedraogo R., Gong Y., Berzins B. et al. Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo. J. Clin. Invest. 2007; 117 (6): 1718-1726. DOI: 10.1172/JCI29623.

47. Lundblad L.K., Thompson-Figueroa J., Leclair T. et al. Tumor necrosis factor-alpha overexpression in lung disease: a single cause behind a complex phenotype. Am. J. Respir. Crit. Car-у Med. 2005; 171 (12): 1363-1370. DOI: 10.1164/rccm.200410-1349OC.

48. Williams A.S., Mathews J.A., Kasahara D.I. et al. Innate and ozone-induced airway hyperresponsiveness in obese mice: role of TNF-a. Am. J. Physiol. Lung Cell Mol. Physiol. 2015; 308 (11): L1168-1177. DOI: 10.1152/ajplung.00393.2014.

49. Pedersen J.M., Budtz-Jorgensen E., Mortensen E.L. et al. Late midlife C-reactive protein and interleukin-6 in middle aged danish men in relation to body size history within and across generations. Obesity (Silver Spring). 2016; 24 (2): 461-468. DOI: 10.1002/oby.21311.

50. Naugler W.E., Karin M. The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol. Med. 2008; 14 (3): 109-119. DOI: 10.1016/j.molmed.2007.12.007.

51. Stenlof K., Wernstedt I., Fjallman T. et al. Interleukin-6 levels in the central nervous system are negatively correlated with fat mass in overweight/obese subjects. J. Clin. Endocrinol. Metab. 2003; 88 (9): 4379-4383. DOI: 10.1210/jc.2002-021733.

52. Chen Y., Pitzer A.L., Li X. et al. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: role of HMGB1. J. Cell. Mol. Med. 2015; 19 (12): 2715-2727. DOI: 10.1111/jcmm.12657.

53. Moschen A.R., Kaser A., Enrich B. et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. 2007; 178 (3): 1748-1758. DOI: 10.4049/jimmunol.178.3.1748.

54. Kawanami D., Maemura K., Takeda N. et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem. Biophys. Res. Commun. 2004; 314 (2): 415-419. DOI: 10.1016/j.bbrc.2003.12.104.

55. Wu J.T., Wu L.L. Linking inflammation and atherogenesis: Soluble markers identified for the detection of risk factors and for early risk assessment. Clin. Chim. Acta. 2006; 366 (1-2): 74-80. DOI: 10.1016/j.cca.2005.10.016.

56. Gomes F., Telo D.F., Souza H.P. et al. [Obesity and coronary artery disease: role of vascular inflammation]. Arq. Bras. Cardiol. 2010; 94 (2): 255-261, 273-279, 260-266. DOI: 10.1590/S0066-782X2010000200021 (in English, Portuguese, Spanish).

57. Agrawal A., Mabalirajan U., Ahmad T., Ghosh B. Emerging interface between metabolic syndrome and asthma. Am. J. Respir. Cell. Mol. Biol. 2011; 44 (3): 270-275. DOI: 10.1165/rcmb.2010-0141TR.

58. Dekkers B.G., Schaafsma D., Tran T. et al. Insulin-induced laminin expression promotes a hypercontractile airway smooth muscle phenotype. Am. J. Respir. Cell. Mol. Biol. 2009; 41 (4): 494-504. DOI: 10.1165/rcmb.2008-0251OC.

59. Zaigham S., Nilsson P.M., Wollmer P. et al. The temporal relationship between poor lung function and the risk of diabetes. BMC Pulm. Med. 2016; 16 (1): 75. DOI: 10.1186/s12890-016-0227-z.

60. Meng Q., Lai Y.C., Kelly N.J. et al. Development of a mouse model of metabolic syndrome, pulmonary hypertension, and heart failure with preserved ejection fraction. Am. J. Respir. Cell Mol. Biol. 2017; 56 (4): 497-505. DOI: 10.1165/rcmb.2016-0177OC.


Review

For citations:


Sergeeva V.A. Respiratory pathophysiology in obesity. PULMONOLOGIYA. 2021;31(6):808-815. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-6-808-815

Views: 974


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)