Disease-modifying treatment of asthma: role of omalizumab
https://doi.org/10.18093/0869-0189-2020-30-6-822-830
Abstract
In the past years, we have seen a paradigm shift from symptomatic to disease-modifying approach to the treatment of chronic diseases. The treatment of asthma, which is a chronic disease, is no exception to this shift. Although the available therapies for asthma have been traditionally identified as either “controllers” or “relievers”, this dichotomous classification does not address the therapeutic potential to modify the underlying disease. The disease-modifying therapy for asthma can be defined either as airway remodeling or as modifying the disease's natural course. Among the biological therapies, the disease-modifying effect of omalizumab was studied most comprehensively. Some studies of other biological therapies for severe asthma (mepolizumab, benralizumab) also addressed the airway remodeling effect. A further study of the disease-modifying therapy should help gain a deeper understanding of its potential in managing asthma.
About the Authors
G. A. NovikRussian Federation
Gennadiy A. Novik - Doctor of Medicine, Professor, Head of I.M.Vorontsov Pediatric diseases Department, Faculty of Postgraduate and Additional Professional Education.
Ul. Litovskaya 2, St. Petersburg, 194100
Competing Interests: not
S. N. Avdeev
Russian Federation
Sergey N. Avdeev - Doctor of Medicine, Professor, Corresponding Member of Russian Academy of Sciences, Head of Department of Pulmonology.
Ul. Trubetskaya 8, build. 2, Moscow, 119991; tel.: (495) 395-63-93Competing Interests: not
Yu. V. Solovkina
Russian Federation
Yuliya V. Solovkina - Candidate of Medicine, Senior Medical Adviser, “Novartis Pharma” Limited Liability Company.
72/3 Leningradskiy pr., 125315, Moscow; tel.: (495) 660-75-09Competing Interests:
Yuliya V. Solovkina is a Senior Medical Adviser in Novartis Pharma Limited Liability Company
References
1. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Updated 2020. Available at: https://ginasthma.org/wp-content/uploads/2020/06/GINA-2020-report_20_06_04-1-wms.pdf [Accessed: April 15, 2020].
2. Dalgas U., Langeskov-Christensen M., Stenager E. et al. Exercise as medicine in multiple sclerosis-time for a paradigm shift: preventive, symptomatic, and disease-modifying aspects and perspectives. Curr. Neurol. Neurosci. Rep. 2019; 19 (11): 88. DOI: 10.1007/s11910-019-1002-3.
3. Saglani S., Lloyd C.M. Novel concepts in airway inflammation and remodelling in asthma. Eur. Respir. J. 2015; 46 (6): 1796-1804. DOI: 10.1183/13993003.01196-2014.
4. Levy B.D., Noel P.J., Freemer M.M. et al. Future research directions in asthma. An NHLBI Working Group report. Am. J. Respir. Crit. Care Med. 2015; 192 (11): 1366-1372. DOI: 10.1164/rccm.200311-1539WS.
5. NHLBI. Guidelines for the Diagnosis and Management of Asthma (EPR-3). Available at: https://www.nhlbi.nih.gov/health-topics/guidelines-for-diagnosis-management-of-asthma [Accessed: April 15, 2020].
6. Lloyd C.M., Robinson D.S. Allergen-induced airway remodelling. Eur. Respir. J. 2007; 29 (5):1020-1032. DOI: 10.1183/09031936.00150305.
7. Bergeron C., Tulic M.K., Hamid Q. Airway remodelling in asthma: from benchside to clinical practice. Can. Respir. J. 2010; 17(4): e85-93. DOI: 10.1155/2010/318029.
8. Vishneva E.A., Namazova-Baranova L.S., Novik G.A. et al. [Actual surveillance of children with bronchial asthma]. Pediatricheskaya farmakologiya. 2017; 14 (6): 443-458 (in Russian).
9. Boulet L.P., Laviolette M., Turcotte H. et al. Bronchial subepithelial fibrosis correlates with airway responsiveness to methacholine. Chest. 1997; 112 (1): 45-52. DOI: 10.1378/chest.112.1.45.
10. Wang H., Yao H., Yi B. et al. MicroRNA-638 inhibits human airway smooth muscle cell proliferation and migration through targeting cyclin D1 and NOR1. J. Cell Physiol. 2018; 234 (1): 369-381. DOI: 10.1002/jcp.26930.
11. Benayoun L., Druilhe A., Dombret M.C. et al. Airway structural alterations selectively associated with severe asthma. Am. J. Respir. Crit. Care Med. 2003; 167 (10): 13601368. DOI: 10.1164/rccm.200209-1030OC.
12. Aikawa T., Shimura S., Sasaki H. et al. Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest .1992; 101: 916-921.
13. Palgan K., Bartuzi Z. Angiogenesis in bronchial asthma. Int. J. Immunopathol. Pharmacol. 2015; 28 (3): 415-420. DOI: 10.1177/0394632015580907.
14. Haraguchi M., Shimura S., Shirato K. Morphometric analysis of bronchial cartilage in chronic obstructive pulmonary disease and bronchial asthma. Am. J. Respir. Crit. Care Med. 1999; 159: 1005-1013. DOI: 10.1164/ajrccm.159.3.9712144.
15. Avdeev S.N. [Respiratory diseases]. Moscow: Remedium; 2020 (in Russian).
16. Mathur S.K. Allergy and asthma in the elderly. Semin. Respir. Crit. Care Med. 2010; 31 (5): 587-595. DOI: 10.1055/s-0030-1265899.
17. James A.L., Wenzel S. Clinical relevance of airway remodelling in airway diseases. Eur. Respir. J. 2007; 30 (1): 134-155. DOI: 10.1183/09031936.00146905.
18. Rasmussen F., Taylor D.R., Flannery E.M. et al. Risk factors for airway remodeling in asthma manifested by a low postbronchodilator FEV1/vital capacity ratio: a longitudinal population study from childhood to adulthood. Am. J. Respir. Crit. Care Med. 2002; 165 (11): 1480-1488. DOI: 10.1164/rccm.2108009.
19. Dompeling E., van Schayck C.P., van Grunsven P.M. et al. Slowing the deterioration of asthma and chronic obstructive pulmonary disease observed during bronchodilator therapy by adding inhaled corticosteroids. A 4-year prospective study. Ann. Intern. Med. 1993; 118 (10): 770-778. DOI: 10.7326/0003-4819-118-10-199305150-00003.
20. Payne D.N.R., Rogers A.V., Adelroth E. et al. Early thickening of the reticular basement membrane in children with difficult asthma. Am. J. Respir. Crit. Care Med. 2003; 167 (1): 78-82. DOI: 10.1164/rccm.200205-414OC.
21. Bai T.R., Cooper J., Koelmeyer T. et al. The effect of age and duration of disease on airway structure in fatal asthma. Am. J. Respir. Crit. Care Med. 2000; 162 (2, Pt 1): 663-669. DOI: 10.1164/ajrccm.162.2.9907151.
22. Bossley C.J., Fleming L., Gupta A. et al. Pediatric severe asthma is characterized by eosinophilia and remodeling without T(H)2 cytokines. J. Allergy Clin. Immunol. 2012; 129 (4): 974-982.e13. DOI: 10.1016/j.jaci.2012.01.059.
23. Castro-Rodriguez J.A., Saglani S., Rodriguez-Martinez C.E. et al. The relationship between inflammation and remodeling in childhood asthma: a systematic review. Pediatr. Pulmonol. 2018; 53 (6): 824-835. DOI: 10.1002/ppul.23968.
24. Russell R.J., Chachi L., FitzGerald J.M. et al. Effect of tralokinumab, an interleukin-13 neutralising monoclonal antibody, on eosinophilic airway inflammation in uncontrolled moderate-to-severe asthma (MESOS): a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. Lancet Respir. Med. 2018; 6 (7): 499-510. DOI: 10.1016/S2213-2600(18)30201-7.
25. Yang S.J., Allahverdian S., Saunders A.D.R. et al. IL-13 signaling through IL-13 receptor a2 mediates airway epithelial wound repair. FASEB. J. 2019; 33 (3): 3746-3757. DOI: 10.1096/fj.201801285R.
26. Fang L., Sun Q., Roth M. Immunologic and non-immunologic mechanisms leading to airway remodeling in asthma. Int. J. Mol. Sci. 2020; 21 (3): 757. DOI: 10.3390/ijms21030757.
27. Pan S., Conaway S.Jr, Deshpande D.A. Mitochondrial regulation of airway smooth muscle functions in health and pulmonary diseases. Arch. Biochem. Biophys. 2019; 663: 109-119. DOI: 10.1016/j.abb.2019.01.002.
28. Roth M., Zhao F., Zhong J. et al. Serum IgE induced airway smooth muscle cell remodeling is independent of allergens and is prevented by omalizumab. PLoS One. 2015; 10 (9): e0136549. DOI: 10.1371/journal.pone.0136549.
29. Roth M., Tamm M. The effects of omalizumab on IgE-induced cytokine synthesis by asthmatic airway smooth muscle cells. Ann. Allergy Asthma Immunol. 2010; 104 (2): 152-160. DOI: 10.1016/j.anai.2009.11.022.
30. Balhara J., Shan L., Zhang J. et al. Pentraxin 3 deletion aggravates allergic inflammation through a TH17-dominant phenotype and enhanced CD4 T-cell survival. J. Allergy Clin. Immunol. 2017; 139 (3): 950-963.e9. DOI: 10.1016/j.jaci.2016.04.063.
31. Fang L., Wang X., Sun Q. et al. IgE downregulates PTEN through microRNA-21-5p and stimulates airway smooth muscle cell remodeling. Int. J. Mol. Sci. 2019; 20 (4): 875. DOI: 10.3390/ijms20040875.
32. Kardas G., Kuna P., Panek M. Biological therapies of severe asthma and their possible effects on airway remodeling. Front. Immunol. 2020; 11: 1134. DOI: 10.3389/fimmu.2020.01134.
33. Backman K.S., Greenberger P.A., Patterson R. Airways obstruction in patients with long-term asthma consistent with ‘‘irreversible asthma’’. Chest. 1997; 112 (5): 1234-1240. DOI: 10.1378/chest.112.5.1234.
34. Avdeev S.N., Aksel'rod A.S., Aleksandrov M.V. et al. [Functional diagnostics: national guidelines]. Moscow: GEOTAR-Media; 2019 (in Russian).
35. Huang Y.C., Leyko B., Frieri M. Effects of omalizumab and budesonide on markers of inflammation in human bronchial epithelial cells. Ann. Allergy Asthma Immunol. 2005; 95 (5): 443-451. DOI: 10.1016/S1081-1206(10)61170-2.
36. Riccio A.M., Dal Negro R.W., Micheletto C. et al. Omalizumab modulates bronchial reticular basement membrane thickness and eosinophil infiltration in severe persistent allergic asthma patients. Int. J. Immunopathol. Pharmacol. 2012; 25 (2): 475-484. DOI: 10.1177/039463201202500217.
37. Riccio A.M., Mauri P., De Ferrari L. et al. Galectin-3: an early predictive biomarker of modulation of airway remodeling in patients with severe asthma treated with omalizumab for 36 months. Clin. Transl. Allergy. 2017; 7: 6. DOI: 10.1186/s13601-017-0143-1.
38. ZastrzezyAska W., Przybyszowski M., Bazan-Socha S. et al. Omalizumab may decrease the thickness of the reticular basement membrane and fibronectin deposit in the bronchial mucosa of severe allergic asthmatics. J. Asthma. 2020; 57 (5): 468-477. DOI: 10.1080/02770903.2019.1585872.
39. Mauri P., Riccio A.M., Rossi R. et al. Proteomics of bronchial biopsies: Galectin-3 as a predictive biomarker of airway remodelling modulation in omalizumab-treated severe asthma patients. Immunol. Lett. 2014; 162 (1): 2-10. DOI: 10.1016/j.imlet.2014.08.010.
40. Hoshino M., Ohtawa J. Effects of adding omalizumab, an anti-immunoglobulin E antibody, on airway wall thickening in asthma. Respiration. 2012; 83 (6): 520-528. DOI: 10.1159/000334701.
41. Tajiri T., Niimi A., Matsumoto H. et al. Comprehensive efficacy of omalizumab for severe refractory asthma: a timeseries observational study. Ann. Allergy Asthma Immunol. 2014; 113 (4): 470-475.e2. DOI: 10.1016/j.anai.2014.06.004.
42. Flood-Page P., Menzies-Gow A., Phipps S. et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Invest. 2003; 112 (7): 1029-1036. DOI: 10.1172/JCI17974.
43. Haldar P., Brightling C.E., Hargadon B. et al. Mepoli-zumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 2009; 360 (10): 973-984. DOI: 10.1056/NEJMoa0808991.
44. Saunders R., Kaul H., Berair R. et al. DP2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment. Sci. Transl. Med. 2019; 11 (479): eaao6451. DOI: 10.1126/scitranslmed.aao6451.
45. Chachi L., Diver S., Kaul H. et al. Computational modelling prediction and clinical validation of impact of benral-izumab on airway smooth muscle mass in asthma. Eur. Respir. J. 2019; 54 (5): 1900930. DOI: 10.1183/13993003.00930-2019.
46. Salter H.H. On asthma: its pathology and treatment. London: Churchill; 1860.
47. O'Byrne P., Fabbri L.M., Pavord I.D. et al. Asthma progression and mortality: the role of inhaled corticosteroids. Eur. Respir. J. 2019; 54 (1): 1900491. DOI: 10.1183/13993003.00491-2019.
48. Novik G.A., Vishneva E.A., Namazova-Baranova L.S. [Adherence: its role in achieving control over bronchial asthma in children]. Pediatricheskaya farmakologiya. 2015; 12 (2): 190-196 (in Russian).
49. Baena-Cagnani C.E., Teijeiro A., Canonica G.W. Four-year follow-up in children with moderate/severe uncontrolled asthma after withdrawal of a 1-year omalizumab treatment. Curr. Opin. Allergy Clin. Immunol. 2015; 15 (3): 267-271. DOI: 10.1097/ACI.0000000000000161.
50. Vennera M.D.C., Sabadell C., Picado C. Duration of the efficacy of omalizumab after treatment discontinuation in “real life” severe asthma. Thorax. 2018; 73 (8): 782-784. DOI: 10.1136/thoraxjnl-2017-210017.
Review
For citations:
Novik G.A., Avdeev S.N., Solovkina Yu.V. Disease-modifying treatment of asthma: role of omalizumab. PULMONOLOGIYA. 2020;30(6):822-830. (In Russ.) https://doi.org/10.18093/0869-0189-2020-30-6-822-830