Pulmonary hemodynamics and remodeling of the right heart in patients with COPD depending on the risk group, the direction of drug correction
https://doi.org/10.18093/0869-0189-2020-30-6-756-763
Abstract
Objective: to assess pulmonary hemodynamics and the presence of systolic and/or diastolic dysfunction of the myocardium of the right and left ventricles in patients with COPD, depending on the risk groups (A, B, C, D); to determine the possible directions of pharmacological correction.
Methods. Patients (n = 119, including 87 men, mean age - 62.5 ± 14.8 years) with COPD of risk group A (n = 21) and B (n = 98) (GOLD, 2019). In addition to the routine clinical and instrumental examinations, pulmonary and aortic pulse wave velocity was determined using MRI diagnostics.
Results. The right ventricular diastolic dysfunctions (DD) were revealed in all patients with COPD (E/A TV = 0.85 ± 0,03 vs 0.97 ± 0,03; groups A and B respectively, p < 0,05). 28.6% of patients of group B had a restrictive type of transtricuspid blood flow (p < 0,05). The pulmonary blood pressure was increased: 24.3 ± 7.6 mm Hg in patients with COPD group A, 17.2 ± 6.8 mm Hg - in group B. Patients of group B had a higher pulmonary pulse wave velocity (pPWV) (B: 3.13 [2.93-3.44] ms-1 vs A: 1.97 [1.62-2.68] ms-1, p = 0.005) and stroke volume of RV (B: 33.5 [27.3-37.9] mL vs A: 29.1 [24.0-35.7] mL, p = 0.005). The correlation between pPWV and the degree of bronchial obstruction, ejection fraction and end-diastolic volume of the RV, and mean pulmonary arterial pressure (mPAP) was strong for patients of group B and moderate for patients of group A.
Conclusion. Thus, patients with COPD risk group A have the borderline indicators of mPAP with DD of LV and RV. The progression of hemodynamic disorders is associated with the aggravation of of clinical symptoms and respiratory disorders, that were more pronounced in group B. This progression led to mandatory broncholytic drug correction.
About the Authors
E. B. KlesterRussian Federation
Elena B. Klester - Doctor of Medicine, Assistant Professor, Senior researcher.
Pr. Lenina 40, Barnaul, Altay Region, 656060; tel.: (961) 994-16-60
Competing Interests: no conflict of interest
Ya. N. Shoykhet
Russian Federation
Yakov N. Shoykhet, Doctor of Medicine, Professor, Corresponding Member of Russian Academy of Sciences, Head of Department, General Internal Medicine and Hospital Surgery with a course of Additional Professional Education.
Pr. Lenina 40, Barnaul, Altay Region, 656060; tel.: (3852) 68-50-23
Competing Interests: no conflict of interest
A. S. Balitskaya
Russian Federation
Aleksandra S. Balitskaya - postgraduate student, Department of General Internal Medicine and occupational diseases.
Pr. Lenina 40, Barnaul, Altay Region, 656060; tel.: (960) 963-23-83
Competing Interests: no conflict of interest
K. N. Zhuravlev
Russian Federation
Kirill N. Zhuravlev - Candidate of Medicine, Chief of the Division.
Yauzskaya ul. 11, Moscow, 109240; tel.: (926) 286-52-04
Competing Interests: no conflict of interest
V. A. Elykomov
Russian Federation
Valeriy A. Elykomov - Doctor of Medicine, Professor, Head of Therapy and General Medical Practice Department with a course of Additional Professional Education.
Pr. Lenina 40, Barnaul, Altay Region, 656060; tel.: (3852) 68-96-73
Competing Interests: no conflict of interest
I. V. Bakhareva
Russian Federation
Irina V. Bakhareva - Candidate of Medicine, Chief Therapist Pulmonologist of Altay Region, Healthcare Ministry of Altay Region
Krasnoarmeiskiy pr. 95A, Barnaul, Altay Region, 656031; tel.: (3852) 62-65-74
Competing Interests: no conflict of interest
A. V. Bocharova
Russian Federation
Antonina V. Bocharova, Candidate of Medicine, Head of the Cardiology Department.
Ul. Lyapidevskogogo 1, Barnaul, Altay Region, 656024; tel.: (3852) 68-97-51Competing Interests: no conflict of interest
V. G. Yarkova
Russian Federation
Valentina G. Yarkova, Candidate of Medicine, Associate Professor, Department of Propaedeutics and General Internal Medicine.
Ul. Odesskaya 54, Tyumen', 625030; tel.: (922) 473-02-36
Competing Interests: no conflict of interest
K. V. Klester
Russian Federation
Karolina V. Klester - Postgraduate student, Department of Therapy and General Medical Practice with a course of Additional Professional Education.
Pr. Lenina 40, Barnaul, Altay Region, 656060; tel.: (962) 796-40-52
Competing Interests: no conflict of interest
References
1. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. 2019 Report. Available at: https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-v1.7-FINAL-14Nov2018-WMS.pdf [Accessed: May, 2019].
2. World Health Organization. The top 10 causes of death. Updated: May 24, 2018. Available at: https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death [Accessed: May, 2019].
3. Gomez-Arroyo J., Santos-Martinez L.E., Aranda A. et al. Differences in right ventricular remodeling secondary topressure overload in patients with pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2014; 189 (5): 603—606. DOI: 10.1164/rccm.201309-1711LE.
4. Tannus-Silva D.G.S., Rabahi M.F. State of the art review of the right ventricle in COPD patients: It is time to look closer. Lung. 2017; 195 (1): 9-17. DOI: 10.1007/s00408-016-9961-5.
5. Washko G.R., Nardelli P., Ash S.Y. et al. Arterial vascular pruning, right ventricular size, and clinical outcomes in chronic obstructive pulmonary disease: A longitudinal observational study. Am. J. Respir. Crit. Care Med. 2019; 200 (4): 465-461. DOI: 10.1164/rccm.201811-2063OC.
6. Vonk Noordegraaf A., Chin K.M., Haddad F. et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur. Respir. J.2019; 53 (1): 1801900. DOI: 10.1183/13993003.019002018.
7. Xia Y.J., Sun H.Y., Jiang L., Wang Y.Y. et al. Evaluation of the effects of right ventricularpressure load on left ventricular myocardial mechanics in patients with chronic obstructive pulmonary disease by ultrasound speckle tracking imaging. Eur. Rev. Med. Pharmacol. Sci. 2018; 22 (15): 4949-4955. DOI: 10.26355/eurrev_201808_15634.
8. Olschewski H., Behr J., Bremer H. et al. Pulmonary hypertension due to lung diseases: Updated recommendations from the Cologne Consensus Conference 2018. Int. J. Cardiol. 2018; 272 (Suppl.): 63-68. DOI: 10.1016/j.ijcard.2018.08.043.
9. Galife N., Humbert M., Vachiery J. et al. [2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension]. Rossiyskiy kardiologicheskiy zhurnal. 2016; (5): 5-64. DOI: 10.15829/1560-4071-2016-5-5-64 (in Russian).
10. Lang R.M., Badano L.P., Mor-Avi V. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (3): 233-271. DOI: 10.1093/ehjci/jev014.
11. Wentland A.L., Grist T.M., Wieben O. Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc. Diagn. Ther. 2014; 4 (2): 193-206. DOI: 10.3978/j.issn.2223-3652.2014.03.04.
12. Weir-McCall J.R., Liu-Shiu-Cheong P.S.K., Struthers A.D. et al. Disconnection of pulmonary and systemic arterial stiffness in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 1755-1765. DOI: 10.2147/COPD.S160077.
13. Davies J.E., Whinnett Z.I., Francis D.P. Use of simultaneous pressure and velocity measurements to estimate arterial wave speed at a single site in humans. Am. J. Physiol. Heart Circ. Physiol. 2006; 290 (2): H878-885. DOI: 10.1152/ajpheart.00751.2005.
14. Aisanov Z.R., Avdeev S.N., Arkhipov V.V. et al. Вставить ее в п. 14 References. Должно быть: Aisanov Z.R., Avdeev S.N., Arkhipov V.V. et al. National clinical guidelines on diagnosis and treatment of chronic obstructive pulmonary disease: a clinical decision-making algorithm]. Pul'monologiya. 2017; 27 (1): 13-20. DOI: 10.18093/0869-0189-2017-27-1-13-20 (in Russian).
15. Palau-Caballero G., Walmsley J., Van Empel V. et al. Why septal motion is a marker of right ventricular failure in pulmonary arterial hypertension: mechanistic analysis using a computer model. Am. J. Physiol. Heart Circ. Physiol. 2017; 312 (4): H691-700. DOI: 10.1152/ajpheart.00596.2016.
16. Haddad F., Guihaire J., Skhiri M. et al. Septal curvature is marker of hemodynamic, anatomical, and electromechanical ventricular interdependence in patients with pulmonary arterial hypertension. Echocardiography. 2014; 31 (6): 699-707. DOI: 10.1111/echo.12468.
17. Weir-McCall J.R., Struthers A.D., Lipworth B.J., Houston J.G. The role of arterial stiffness in COPD. Respir. Med. 2015; 109 (11): 1381-1390. DOI: 10.1016/j.rmed.2015.06.005.
18. Rafikova O., Al Ghouleh I., Rafikov R. Focus on early events: Pathogenesis of pulmonary arterial hypertension development. Antioxid. Redox. Signal. 2019; 31 (13): 933953. DOI: 10.1089/ars.2018.7673.
19. Tuleta I., Farrag T., Busse L. et al. High prevalence of COPD in atherosclerosis patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; 12: 3047-3053. DOI: 10.2147/COPD.S141988.
20. Stevens G.R., Garcia-Alvarez A., Sahni S. et al. RV dysfunction in pulmonary hypertension is independently related to pulmonary artery stiffness. JACC Cardiovasc. Imaging. 2012; 5 (4): 378-387. DOI: 10.1016/j.jcmg.2011.11.020.
21. Wells J.M., Iyer A.S., Rahaghi F.N. et al. Pulmonary artery enlargement is associated with right ventricular dysfunction and loss of blood volume in small pulmonary vessels in chronic obstructive pulmonary disease. Circ. Cardiovasc. Imaging. 2015; 8 (4): e002546. DOI: 10.1161/CIRCIMAG-ING.114.002546.
22. Simonneau G., Montani D., Celermajer D.S. et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019; 53 (1): 1801913. DOI: 10.1183/13993003.01913-2018.
23. Simpson C.E., Damico R.L., Kolb T.M. et al. Ventricular mass as a prognostic imaging biomarker in incident pulmonary arterial hypertension. Eur. Respir. J. 2019; 53 (4): 1802067. DOI: 10.1183/13993003.02067-2018.
24. de Man F.S., Handoko M.L., Vonk-Noordegraaf A. The unknown pathophysiological relevance of right ventricular hypertrophy in pulmonary arterial hypertension. Eur. Respir. J. 2019; 53 (4): 1900255. DOI: 10.1183/13993003.002552019.
25. Weir-McCall J.R., Liu-Shiu-Cheong P.S., Struthers A.D. et al. Pulmonary arterial stiffening in COPD and its implications for right ventricular remodelling. Eur. Radiol. 2018; 28 (8): 3464-3472. DOI: 10.1007/s00330-018-5346-x.
26. Beck E.M., Hatton N.D., Ryan J.J. Novel techniques for advancing our understanding of pulmonary arterial hypertension. Eur. Respir. J.2019; 53 (5): 1900556. DOI: 10.1183/13993003.00556-2019.
27. Cirulis M.M., Ryan J.J.Who's who of pulmonary hypertension: Redefining classification to advance precision care. Circ. Genom. Precis. Med. 2018; 11 (4): e002116. DOI: 10.1161/CIRCGEN.118.002116.
28. Sitbon O., Gomberg-Maitland M., Granton J. et al. Clinical trial design and new therapies for pulmonary arterial hypertension. Eur. Respir. J. 2019; 53 (1). pii: 1801908. DOI: 10.1183/13993003.01908-2018.
Review
For citations:
Klester E.B., Shoykhet Ya.N., Balitskaya A.S., Zhuravlev K.N., Elykomov V.A., Bakhareva I.V., Bocharova A.V., Yarkova V.G., Klester K.V. Pulmonary hemodynamics and remodeling of the right heart in patients with COPD depending on the risk group, the direction of drug correction. PULMONOLOGIYA. 2020;30(6):756-763. (In Russ.) https://doi.org/10.18093/0869-0189-2020-30-6-756-763