Preview

PULMONOLOGIYA

Advanced search

Some pathogenic aspects of pulmonary emphysema in COPD patients

https://doi.org/10.18093/0869-0189-2008-0-3-48-53

Abstract

Histological and immunohistochemical investigations of lung tissue specimens were performed in 9 patients with COPD underwent lung volume reduction surgery. Lung tissue specimens of died persons without lung and heart pathology were as controls. Tissue expressions of endothelial growth factor (EGF), type 9 matrix metalloproteinase, type 1 matrix metalloproteinase (TIMP-1) tissue inhibitor, and transforming growth factor β1 (TGF β-1) have been studied. Patents with severe emphysema typically had focal interstitial fibrosis, interalveolar septa infiltrated with interstitial macrophages and lymphocytes, hypertrophy of media and proliferation of intima in the vascular wall, and arteriolar muscularization. There was significantly higher expression of EGF and TIMM-1 in the lung tissue of these patients compared with controls; this could confirm the presence of compensatory mechanisms of lung parenchyma destruction. Strong correlations were found between expression of EGF and TGF β-1, EGF and TIMP-1 which demonstrated a relationship between angiogenesis, proteolysis and fibrogenesis in development of emphysema.

About the Authors

A. V. Averyanov
ФГУ НИИ пульмонологии ФМБА России
Russian Federation


M. V. Samsonova
ФГУ НИИ пульмонологии ФМБА России
Russian Federation


A. L. Chernyaev
ФГУ НИИ пульмонологии ФМБА России
Russian Federation


A. G. Chuchalin
ФГУ НИИ пульмонологии ФМБА России
Russian Federation


A. E. Polivanova
ФГУ НИИ пульмонологии ФМБА России
Russian Federation


G. V. Nikolaev
Институт высоких медицинских технологий СПГУ
Russian Federation


V. I. Perepechin
ФГУ НИИ хирургии им. А.В.Вишневского Росмедтехнологий
Russian Federation


G. E. Polivanov
ФГУ НИИ пульмонологии ФМБА России
Russian Federation


I. V. Dvorakovskaya
НИИ пульмонологии СПГМУ им. И.П.Павлова Росздрава
Russian Federation


References

1. Snider G.L., Kleinerman J., Thurlbeck W.M. et al. The definition of emphysema. Am. Rev. Respir. Dis. 1985; 132: 182–185.

2. Глобальная стратегия диагностики, лечения и профилактики хронической обструктивной болезни легких. Пересмотр 2006 г. М.: Атмосфера; 2007.

3. Laennec R. A treatise on the diseases of the chest on mediate auscultation: Translated by Forbes J. 4th London edition. Philadelphia: Thomas & Co.; 1827. 135–163.

4. Изаксон Э. О патолого-анатомических изменениях легочных сосудов при эмфизематозном процессе в легких. Пульмонология 2005; 4: 41–52.

5. Laurell C.B., Erickson S. The electrophoretic α1 -globulin pattern of serum in α1 -antitrypsin deficiency. Scan. J. Clin. Lab. Invest. 1963; 15: 132–140.

6. Белов Е.И. Патоиммунный механизм развития хронической диффузной эмфиземы легких в экспериментальной модели. В кн.: Сборник науч. трудов Мордовского государственного университета. Саранск: 1971. 3–8.

7. Vlanovich G., Russel M.L., Mercer R.R., Crapo J.D. Cellular and connective tissue changes in alveolar septal walls in emphysema. Am. J. Respir. Crit. Care Med. 1999; 160 (6): 2086–2092.

8. Boon M.E., Kok L.P. Microwave cookbook of pathology. The art of microscopic visualization. Leiden; 1987.

9. Cottin V., Nunes H., Brillet P.Y. et al. Combined pulmonary fibrosis and emphysema: a distinct underrecognised entity. Eur. Respir. J. 2005; 26: 586–593.

10. Daniil Z., Koutsokera A., Gourgoulianis K. Combined pulmonary fibrosis and emphysema in patients exposed to agrochemical compounds. Eur. Respir. J. 2006; 27 (2): 434.

11. Таков Р.Г. Гистологические изменения в респираторной части легких при хронической эмфиземе легких. Арх. пат. 1967; 46: 18–24.

12. Demedts I., Demoor T., Bracke K. R. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir. Res. 2006; 7: 53.

13. Saetta M., Di Stefano A., Turato G. et. al. CD8 + T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998; 157: 822–826.

14. Grumelli S., Corry D.B., Song L.Z. et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. Publ. Library of Sci. Med. 2004; 1 (е8): 075–083.

15. Majo J., Ghezzo H., Cosio M.G. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur. Respir. J. 2001; 17 (5): 946–953.

16. Voelkel N., Taraseviciene Stewart L. Emphysema an autoimmune vascular disease? Proc. Am. Thorac. Soc. 2005; 2: 23–25.

17. KasaharaY., Tuder M., Cool C. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am. J. Respir. Crit. Care Med. 2001; 163 (3): 737–744.

18. Kranenburg A.R. et al. Enhanced bronchial expression of vascular endothelial growth factor and receptors (Flk-1 and Flt-1) in patients with chronic obstructive pulmonary disease. Thorax 2005; 60: 106–113.

19. He H., Venema V.J., Gu X. et al. Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J. Biol. Chem. 1999; 274: 25130–25135.

20. Le Cras T.D., Markham N.E., Tuder R.M. et al. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am. J. Physiol. 2002; 283: 555–562.

21. Russell R.E., Thorley A., Culpitt S.V. et al. Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002; 283: 867–873.

22. Higashimoto Y., Yamagata Y. Increased serum concentrations of tissue inhibitor of metalloproteinase-1 in COPD patients. Eur. Respir. J. 2005; 25 (5): 885–890.

23. Vignola A., Riccobono M., Mirabella A. Sputum metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio correlates with airflow obstruction in asthma and chronic bronchitis. Am. J. Respir. Crit. Care Med. 1998; 6: 1945–1950.

24. Segura Valdez L., Pardo A., Gaxiola M. et al. Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 2000; 117: 684–694.

25. Stamenkovic I. Extracellular matrix remodelling: The role of matrix metalloproteinases. J. Pathol. 2003, 200: 448–464.

26. Joyce E. Rundhaug matrix metalloproteinases and angiogenesis. J. Cell. Mol. Med. 2005; 9 (2): 267–285.

27. Pertovaara L., Kaipainen A., Mustonen T. et al. Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells. J. Biol. Chem. 1994; 269: 6271–6274.

28. Jeon S. H., Chae B. C., Kim H. A. Mechanisms underlying TGF-beta1-induced expression of VEGF and Flk-1 in mouse macrophages and their implications for angiogenesis. J. Leukoc. Biol. 2007; 81 (2): 557–566.


Review

For citations:


Averyanov A.V., Samsonova M.V., Chernyaev A.L., Chuchalin A.G., Polivanova A.E., Nikolaev G.V., Perepechin V.I., Polivanov G.E., Dvorakovskaya I.V. Some pathogenic aspects of pulmonary emphysema in COPD patients. PULMONOLOGIYA. 2008;(3):48-53. (In Russ.) https://doi.org/10.18093/0869-0189-2008-0-3-48-53

Views: 590


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)