Preview

PULMONOLOGIYA

Advanced search

Safety and efficacy of different drug forms of amoxicillin / clavulanic acid in treatment of lower respiratory tract infections in adults: an open prospective randomized trial

https://doi.org/10.18093/0869-0189-2008-0-2-73-80

Abstract

Amoxicillin/clavulanic acid (ACA) is one of the drugs of choice for treatment of lower respiratory tract infections (LRTI) in adults. One of the serious disadvantages of ACA is relatively high rate of gastrointestinal adverse events (AE). A new form of ACA, which is dispersable tablets Solutab, could potentially reduce the rate of AE because of more rapid and predictable absorption of clavulanic acid from intestine and improve clinical outcomes due to higher adherence to treatment. This trial was aimed to compare AE rate and clinical efficacy of the new dispersable ACA form Solutab with those of traditional ACA tabs in adult patients with non-severe LRTI. The treatment regimen comprised 500/125 mg t.i.d. during 5 to12 days. This was an open, prospective randomized trial performed at 4 clinical centres. Adults with clinically and radiologically detected non-severe community-acquired pneumonia or I or II types COPD exacerbations with purulent sputum received dispersable ACA tablets (the 1st group) or traditional coated tabs of ACA (the 2nd group) in a random proportion of 1 : 1. Clinical efficacy was evaluated with clinical signs, physical symptoms, additional laboratory and instrumental testing. The safety was assessed based on the patient's complaints and results of physical and laboratory examination in visits 2 (Day 3 or 4), 3 (Day 5 to 12), and 4 (Day 30 to 40 after taking the first dose of the drug). The trial involved 200 patients, the mean age, 32.7 ± 18.7 and 33.3 ± 18.6 yrs in the 1st and the 2nd groups, respectively. The groups were similar for history, severity, and clinical course of the disease. Clinical efficacy was 96.9 % in both groups in visit 3, 95.9 % and 96.9 % in the 1st and the 2nd group, respectively, in visit 4. The mean duration of antibacterial therapy was 7.1 ± 1.5 days in the 1st group and 7.2 ± 1.4 days in the 2nd group. AE were reported in 15 % and 31 % of the patients, respectively (p = 0.01). Gastrointestinal AE predominated in both the groups but the rate of diarrhea was lower in patients receiving dispersable ACA: 6 % vs. 17 % in the 2nd group (p = 0.027). Therefore, the new dispersable drug form of ACA has better safety profile in adult patients with non-severe LRTI compared to traditional ACA that was demonstrated by reduction in the AE, mainly diarrhea, rate. Both drug forms showed equally high clinical efficacy.

About the Authors

I. A. Guchev
терапевтическое отделение ФГУ "421 военный госпиталь Московского военного округа" МО РФ
Russian Federation


R. S. Kozlov
Научно-исследовательский институт антимикробной химиотерапии ГОУ ВПО "Смоленская государственная медицинская академия" Росздрава
Russian Federation


References

1. Alfageme I., Aspa J., Bello S. et al. Guidelines for the diagnosis and management of community-acquired pneumonia. Spanish Society of Pulmonology and Thoracic Surgery (SEPAR). Arch. Bronconeumol. 2005; 41: 272–289.

2. Bodmann K.F. Current guidelines for the treatment of severe pneumonia and sepsis. Chemotherapy 2005; 51: 227–233.

3. Синопальников А.И., Романовских А.Г., Козлов Р.С., Рачина С.А. Инфекционное обострение хронической обструктивной болезни легких. (Практические рекомендации по диагностике, лечению и профилактике). Рос. мед. вест. 2006; 12: 4–18.

4. Lujan M., Gallego M., Rello J. Optimal therapy for severe pneumococcal community-acquired pneumonia. Intensive Care Med. 2006; 32: 971–980.

5. Systemic antibiotic treatment in upper and lower respiratory tract infections: official French guidelines. Clin. Microbiol. Infect. 2003; 9: 1162–1178.

6. Mandell L.A., Wunderink R.G., Anzueto A. et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of communityacquired pneumonia in adults. Clin. Infect. Dis. 2007; 44 (suppl. 2): S27–S72.

7. Miyashita N., Matsushima T., Oka M. et al. The JRS guidelines for the management of community-acquired pneumonia in adults: an update and new recommendations. Intern. Med. 2006; 45: 419–428.

8. Schouten J.A., Prins J.M., Bonten M.J. et al. Revised SWAB guidelines for antimicrobial therapy of community-acquired pneumonia. Neth. J. Med. 2005; 63: 323–335.

9. Schouten J.A., Prins J.M., Bonten M. et al. Optimizing the antibiotics policy in the Netherlands. VIII. Revised SWAB guidelines for antimicrobial therapy in adults with community-acquired pneumonia. Ned. Tijdschr. Geneeskd. 2005; 149: 2495–2500.

10. Prins J.M., Kullberg B.J., Gyssens I.C. National guidelines for the use of antibiotics in hospitalised adult patients: the SWAB guidelines revisited. Neth. J. Med. 2005; 63: 288–290.

11. Hedlund J., Stralin K., Ortqvist A. et al. Swedish guidelines for the management of community-acquired pneumonia in immunocompetent adults. Scand. J. Infect. Dis. 2005; 37: 791–805.

12. AFSSAPS guidelines for the antibiotic treatment of lower respiratory track infections. Rev. Mal. Respir. 2003; 20: 462–469.

13. Внебольничная пневмония у взрослых: Практ. рекомендации по диагностике, лечению и профилактике: Пособие для врачей / Чучалин А.Г., Синопальников А.И., Страчунский Л.С. и др. М.; 2006.

14. Woodhead M., Blasi F., Ewig S. et al. Guidelines for the management of adult lower respiratory tract infections. Eur. Respir. J. 2005; 26: 1138–1180.

15. National Heart, Lung, and Blood Institute, World Health Organization. Workshop report: global strategy for the diagnosis, management, and prevention of COPD: updated 2007. Available at: www.goldcopd.org. Accessed March 1, 2008.

16. Global Initiative for Chronic Obstructive Lung Disease strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease: an Asia-Pacific perspective. Respirology 2005; 10: 9–17.

17. Garau J., Twynholm M., Garcia-Mendez E. et al. Oral pharmacokinetically enhanced co-amoxiclav 2000/125 mg, twice daily, compared with co-amoxiclav 875/125 mg, three times daily, in the treatment of community-acquired pneumonia in European adults. J. Antimicrob. Chemother. 2003; 52: 826–836.

18. Henry D.C., Riffer E., Sokol W.N. et al. Randomized double-blind study comparing 3and 6-day regimens of azithromycin with a 10-day amoxicillin-clavulanate regimen for treatment of acute bacterial sinusitis. Antimicrob. Agents Chemother. 2003; 47: 2770–2774.

19. Leophonte P., File T., Feldman C. Gemifloxacin once daily for 7 days compared to amoxicillin/clavulanic acid thrice daily for 10 days for the treatment of community-acquired pneumonia of suspected pneumococcal origin. Respir. Med. 2004; 98: 708–720.

20. Arrieta J.R., Galgano A.S., Sakano E. et al. Moxifloxacin vs amoxicillin/clavulanate in the treatment of acute sinusitis. Am. J. Otolaryngol. 2007; 28: 78–82.

21. Poirier R., Chardon H., Beraud A. et al. Efficacy and tolerability of pristinamycin vs amoxicillin-clavulanic acid combination in the treatment of acute community-acquired pneumonia in hospitalized adults. Rev. Pneumol. Clin. 1997; 53: 325–331.

22. File T.M. Jr., Lode H., Kurz H. et al. Double-blind, randomized study of the efficacy and safety of oral pharmacokinetically enhanced amoxicillin-clavulanate (2,000/125 milligrams) versus those of amoxicillin-clavulanate (875/125 milligrams), both given twice daily for 7 days, in treatment of bacterial community-acquired pneumonia in adults. Antimicrob. Agents Chemother. 2004; 48: 3323–3331.

23. Neu H.C., Wilson A.P., Gruneberg R.N. Amoxycillin / clavulanic acid: a review of its efficacy in over 38,500 patients from 1979 to 1992. J. Chemother. 1993; 5: 67–93.

24. Siquier B., Sanchez-Alvarez J., Garcia-Mendez E. et al. Efficacy and safety of twice-daily pharmacokinetically enhanced amoxicillin/clavulanate (2000/125 mg) in the treatment of adults with community-acquired pneumonia in a country with a high prevalence of penicillin-resistant Streptococcus pneumoniae. J. Antimicrob. Chemother. 2006; 57: 536–545.

25. Sourgens H., Steinbrede H., Verschoor J.S. et al. Bioequivalence study of a novel Solutab tablet formulation of amoxicillin/clavulanic acid versus the originator filmcoated tablet. Int. J. Clin. Pharmacol. Ther. 2001; 39: 75–82.

26. Карпов О.И. Флемоклав Солютаб – новая лекарственная форма амоксициллина/клавуланата в лечении синусита. Клин. фармакол. и тер. 2006; 15 (4): 1–4.

27. Карпов О.И., Рязанцев С.В., Тихомирова И.А. Путь повышения эффективности и переносимости антибиотикотерапии при синусите у детей Детские инфекции 2006; 3: 57–60.

28. Anthonisen N.R., Manfreda J., Warren C.P. et al. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann. Intern. Med. 1987; 106: 196–204.

29. Козлов Р.С., Сивая О.В., Шпынев К.В. и др. Антибиотикорезистентность Streptococcus pneumoniae в России в 1999–2005 гг.: результаты многоцентровых проспективных исследований ПеГАС-I и ПеГАС-II. Клин. микробиол. и антимикроб. химиотер. 2006; 8 (1): 33–47.

30. Филимонова О.Ю., Грудинина С.А., Сидоренко С.В. и др. Антибиотикорезистентность штаммов Haemophilus influenzae, выделенных в Москве с 2002 по 2004 гг. Антибиотики и химиотер. 2004; 49: 14–20.

31. Jacobs M.R., Felmingham D., Appelbaum P.C. et al. The Alexander Project 1998–2000: susceptibility of pathogens isolated from community-acquired respiratory tract infection to commonly used antimicrobial agents. J. Antimicrob. Chemother. 2003; 52: 229–246.

32. Авдеев С.Н., Шанина А.Г., Чучалин А.Г. Бактериальная инфекция у больных ХОБЛ с острой дыхательной недостаточностью. Клин. микробиол. и антимикроб. химиотер. 2005; 7: 245–254.

33. Esel D., Ay-Altintop Y., Yagmur G. et al. Evaluation of susceptibility patterns and BRO beta-lactamase types among clinical isolates of Moraxella catarrhalis. Clin. Microbiol. Infect. 2007; 13: 1023–1025.

34. Beekmann S.E., Heilmann K.P., Richter S.S. et al. Antimicrobial resistance in Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and group A beta-haemolytic streptococci in 2002–2003. Results of the multinational GRASP Surveillance Program. Int. J. Antimicrob. Agents 2005; 25: 148–156.

35. Deshpande L.M., Sader H.S., Fritsche T.R. et al. Contemporary prevalence of BRO beta-lactamases in Moraxella catarrhalis: report from the SENTRY antimicrobial surveillance program (North America, 1997 to 2004). J. Clin. Microbiol. 2006; 44: 3775–3777.

36. Zhanel G.G., Palatnick L., Nichol K.A. et al. Antimicrobial resistance in Haemophilus influenzae and Moraxella catarrhalis respiratory tract isolates: results of the Canadian Respiratory Organism Susceptibility Study, 1997 to 2002. Antimicrob. Agents Chemother. 2003; 47: 1875–1881.

37. Ball P., Baquero F., Cars O. et al. Antibiotic therapy of community respiratory tract infections: strategies for optimal outcomes and minimized resistance emergence. J. Antimicrob. Chemother. 2002; 49: 31–40.

38. Look D.C., Chin C.L., Manzel L.J. et al. Modulation of airway inflammation by Haemophilus influenzae isolates associated with chronic obstructive pulmonary disease exacerbation. Proc. Am. Thorac. Soc. 2006; 3: 482–483.

39. Chin C.L., Manzel L.J., Lehman E.E. et al. Haemophilus influenzae from patients with chronic obstructive pulmonary disease exacerbation induce more inflammation than colonizers. Am. J. Respir. Crit. Care Med. 2005; 172: 85–91.

40. Murphy T.F., Brauer A.L., Schiffmacher A.T. et al. Persistent colonization by Haemophilus influenzae in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2004; 170: 266–272.

41. Patel I.S., Seemungal T.A., Wilks M. et al. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax 2002; 57: 759–764.

42. White A.J., Gompertz S., Bayley D.L. et al. Resolution of bronchial inflammation is related to bacterial eradication following treatment of exacerbations of chronic bronchitis. Thorax 2003; 58: 680–685.

43. Pechère J.C. Modelling and predicting clinical outcomes of antibiotic therapy. Infect. Med. 1998; 15: 46–54.

44. Garau J. Why do we need to eradicate pathogens in respiratory tract infections? Int. J. Infect. Dis. 2003; 7 (suppl. 1): S5–S12.

45. Dagan R., Leibovitz E., Greenberg D. et al. Dynamics of pneumococcal nasopharyngeal colonization during the first days of antibiotic treatment in pediatric patients. Pediatr. Infect. Dis. J. 1998; 17: 880–885.

46. Dagan R., Klugman K.P., Craig W.A. et al. Evidence to support the rationale that bacterial eradication in respiratory tract infection is an important aim of antimicrobial therapy. J. Antimicrob. Chemother. 2001; 47: 129–140.

47. Sader H.S., Jacobs M.R., Fritsche T.R. Review of the spectrum and potency of orally administered cephalosporins and amoxicillin/clavulanate. Diagn. Microbiol. Infect. Dis. 2007; 57(3, suppl.): 5S–12S.

48. Lowdin E., Cars O., Odenholt I. Pharmacodynamics of amoxicillin/clavulanic acid against Haemophilus influenzae in an in vitro kinetic model: a comparison of different dosage regimens including a pharmacokinetically enhanced formulation. Clin. Microbiol. Infect. 2002; 8: 646–653.

49. Siempos I.I., Dimopoulos G., Korbila I.P. et al. Macrolides, quinolones, and amoxicillin/clavulanate for chronic bronchitis: a meta-analysis. Eur. Respir. J. 2007; 29 (6): 1127–1137.

50. Aubier M., Aldons P.M., Leak A. et al. Telithromycin is as effective as amoxicillin/clavulanate in acute exacerbations of chronic bronchitis. Respir. Med. 2002; 96: 862–871.

51. Arnold F.W., Summersgill J.T., Lajoie A.S. et al. A worldwide perspective of atypical pathogens in community-acquired pneumonia. Am. J. Respir. Crit. Care Med. 2007; 175: 1086–1093.

52. Guchev I.A., Yu V.L., Sinopalnikov A. et al. Management of nonsevere pneumonia in military trainees with the urinary antigen test for Streptococcus pneumoniae: an innovative approach to targeted therapy. Clin. Infect. Dis. 2005; 40: 1608–1616.

53. Maimon N., Nopmaneejumruslers C., Marras T.K. Antibacterial class not obviously important in outpatient pneumonia: a meta-analysis. Eur. Respir. J. 2008. Jan 23 [Epub ahead of print]

54. Mills G.D., Oehley M.R., Arrol B. Effectiveness of beta lactam antibiotics compared with antibiotics active against atypical pathogens in non-severe community acquired pneumonia: meta-analysis. Br. Med. J. 2005; 330 (7489): 456.

55. Salkind A.R., Cuddy P.G., Foxworth J.W. Fluoroquinolone treatment of community-acquired pneumonia: a metaanalysis. Ann. Pharmacother. 2002; 36: 1938–1943.

56. Kardas P. Non-compliance-some myths, some facts. Čas Lek. Česk. 2004; 143: 556–559; discus.: 560.

57. Kardas P. Patient non-compliance as a cause of treatment failure. Pol. Merkur. Lek. 2000; 9: 732–735.

58. Wistrom J., Norrby S.R., Myhre E.B. Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients: a prospective study. J. Antimicrob. Chemother. 2001: 47 (1): 43–50.

59. Young V.B., Schmidt T.M. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J. Clin. Microbiol. 2004; 42: 1203–1206.


Review

For citations:


Guchev I.A., Kozlov R.S. Safety and efficacy of different drug forms of amoxicillin / clavulanic acid in treatment of lower respiratory tract infections in adults: an open prospective randomized trial. PULMONOLOGIYA. 2008;(2):73-80. (In Russ.) https://doi.org/10.18093/0869-0189-2008-0-2-73-80

Views: 1336


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)