Genetic aspects of different phenotypes of COPD and asthma
https://doi.org/10.18093/0869-0189-2013-0-1-5-11
Abstract
About the Authors
L. M. OgorodovaRussian Federation
B. A. Chernyak
Russian Federation
O. V. Kozina
Russian Federation
M. B. Freidin
Russian Federation
I. N. Trofimenko
Russian Federation
E. S. Kulikov
Russian Federation
P. A. Selivanova
Russian Federation
References
1. Lopez D., Shibuya K., Rao C. et al. Chronic obstructive pulmonary disease: current burden and future projections. Eur. Respir. J. 2006; 27 (2): 397–412.
2. Holgate S. Difficult asthma. London: Dunitz Martin Ltd; 1999.
3. Аверьянов А.В., Чучалин А.Г., Поливанова А.Э. и др. Фенотипы больных хронической обструктивной болезнью легких. Тер. арх. 2009; 3: 9–15.
4. Garcia–Aymerich J., Agusti A., Barbera J. A. et al. Phenotypic heterogeneity of chronic obstructive pulmonary disease. Arch. Bronconeumol. 2009; 45 (3): 129–138.
5. Огородова Л.М., Кобякова О.С., Петровская Ю.А. и др. Сложная астма. Пульмонология 2001; 1: 94–100.
6. Огородова Л.М., Кобякова О.С., Петровский Ф.И. и др. Клинико–функциональная характеристика фенотипов тяжелой неконтролируемой бронхиальной астмы. Клин. мед. 2006; 2: 24–27.
7. Sato E., Koyama S., Okubo Y. et al. Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemo tactic activity. Am. J. Physiol. 1998; 274: 970–979.
8. Mita Y., Dobashi K., Suzuki K. et al. Induction of muscarinic receptor subtypes in monocytic / macrophagic cells differentiated from EoL1 cells. Eur. J. Pharmacol. 1996; 297: 121–127.
9. Lambrecht B.N., Hoogsteden H.C., Diamant Z., ed. The immunological basis of asthma (Lung Biology in Health and Disease. Vol. 174.). New York: Marcel Dekker; 2003.
10. Hall I.P. Beta2–adrenoceptor polymorphisms and asthma. Clin. Exp. Allergy 1999; 29 (9): 1151–1154.
11. Sarika G.S., Awasthi S. Pharmacogenomics of pediatric asthma. Indian J. Hum. Genet. 2010; 16 (3): 111–118.
12. Yamamoto T., Yamashita N., Kuwabara M. et al. Mutation screening of the muscarinic M2 and M3 receptor genes in asthmatics, outgrow subjects, and normal controls. Ann. Genet. 2002; 45: 109–113.
13. Fenech A.G., Ebejer M.J., Felice A.E. et al. Mutation screening of the muscarinic M2 and M3 receptor genes in normal and asthmatic subjects. Br. J. Pharmacol. 2001; 133: 43–48.
14. The Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2010. Available from: http://www.goldcopd.org
15. The Global Strategy for Asthma Management and Prevention, Global Initiative for Asthma (GINA) 2010. Available from: http://www.ginasthma.org
16. Wenzel S. Severe asthma in adults. Am. J. Respir. Crit. Care Med. 2005; 172: 149–160.
17. Moore W.C., Meyers D.A., Wenzel S.E. Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am. J. Respir. Crit. Care Med. 2010; 181: 315–323.
18. Bradding P., Green R.H. Subclinical phenotypes of asthma. Curr. Opin. Allergy Clin. Immunol. 2010; 10 (1): 54–59.
19. Трофименко И.Н., Черняк Б.А. Бронхиальная гиперреактивность как фенотипическая характеристика хронической обструктивной болезнью легких. Пульмонология 2011; 4: 49–53.
20. De Marco R., Accordini S., Marcon A. et al. Risk factors for chronic obstructive pulmonary disease in a European cohort of young adults. Am. J. Respir. Crit. Care Med. 2011; 183 (7): 891–897.
21. Hospers J.J., Postma D.S., Rijcken B. et al. Histamine airway hyper–responsiveness and mortality from chronic obstructive pulmonary disease: a cohort study. Lancet 2000; 356: 1313–1317.
22. Kanner R.E., Connett J.E., Altose M.D. et al. Gender difference in airway hyperresponsiveness in smokers with mild COPD. The Lung Health Study. Am. J. Respir. Crit. Care Med. 1994; 150 (4): 956–961.
23. Yang S.C., Lin B.Y. Comparison of airway hyperreactivity in chronic obstructive pulmonary disease and asthma. Chang Gung Med. J. 2010; 33: 515–523.
24. Selivanova P.A., Kulikov E.S., Kozina O.V. et al. Morphological and molecular characteristics of "difficult" asthma. J. Asthma 2010; 47 (3): 269–275.
25. Геренг Е.А., Суходоло И.В., Огородова Л.М. и др. Роль клеточных и молекулярных мишеней в формировании различных паттернов воспаления при гетерогенных фенотипах тяжелой бронхиальной астмы. Пульмонология 2009; 5: 78–82.
26. Огородова Л.М., Селиванова П.А., Геренг Е.А. и др. Патоморфологическая характеристика нестабильной бронхиальной астмы (фенотип brittle). Тер. арх. 2008; 3: 39–43.
27. Barnes P.J. Beta–adrenergic receptors and their regulation. Am. J. Respir. Crit. Care Med. 1995; 152 (3): 838–860.
28. Fraser C.M., Chung F.Z., Wang C.D. et al. Site–directed mutagenesis of human beta–adrenergic receptors: substitution of aspartic acid–130 by asparagine produces a receptor with high–affinity agonist binding that is uncoupled from adenylate cyclase. Proc. Natl. Acad. Sci. USA 1988; 85 (15): 5478–5482.
29. Dishy V., Landau R., Sofowora G.G. et al. Beta2–adrenoceptor Thr164Ile polymorphism is associated with markedly decreased vasodilator and increased vasoconstrictor sensitivity in vivo. Pharmacogenetics 2004; 14 (8): 517–522.
30. Hizawa N., Makita H., Nasuhara Y. et al. Beta2–adrenergic receptor genetic polymorphisms and short–term bronchodilator responses in patients with COPD. Chest 2007; 132 (5): 1485–1492.
31. Kim W.J., Hersh C.P., DeMeo D.L. et al. Genetic association analysis of COPD candidate genes with bronchodilator responsiveness. Respir. Med. 2009; 103 (4): 552–557.
32. O'Donnell D.E., Fluge T., Gerken F. et al. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur. Respir. J. 2004; 23 (6): 832–840.
33. Barnes P.J., Belvisi M.G., Mak J.C. et al. Tiotropium bromide (Ba 679 BR), a novel long–acting muscarinic antagonist for the treatment of obstructive airways disease. Life Sci. 1995; 56 (11–12): 853–859.
34. Трофименко И.Н., Непомнящих Н.В., Черняк Б.А. Влияние тиотропия бромида и формотерола на гиперреактивность бронхов при ХОБЛ. В кн.: XXI Национальный конгресс по болезням органов дыхания: Сборник трудов. М.: Дизайн Пресс; 2011. 97.
35. Subramaniam K., Chen K., Joseph K. et al. The 3'–untranslated region of the beta2–adrenergic receptor mRNA regulates receptor synthesis. J. Biol. Chem. 2004; 279 (26): 27108–27115.
36. Moore P.E. Exploration of the beta2–adrenergic receptor regulatory regions: the next step in the holy grail of asthma pharmacogenetics research. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008; 294 (2): L187– L189.
Review
For citations:
Ogorodova L.M., Chernyak B.A., Kozina O.V., Freidin M.B., Trofimenko I.N., Kulikov E.S., Selivanova P.A. Genetic aspects of different phenotypes of COPD and asthma. PULMONOLOGIYA. 2013;(1):5-11. (In Russ.) https://doi.org/10.18093/0869-0189-2013-0-1-5-11