COVID-19 и дети
https://doi.org/10.18093/0869-0189-2020-30-5-609-628
Аннотация
Об авторах
Л. С. Намазова-БарановаРоссия
Намазова-Баранова Лейла Сеймуровна – д. м. н., профессор, академик Российской академии наук, президент Союза педиатров России; руководитель Научно-исследовательского института педиатрии и охраны здоровья детей Федерального государственного бюджетного учреждения «Центральная клиническая больница Российской академии наук» Министерства науки и высшего образования Российской Федерации; заведующая кафедрой факультетской педиатрии педиатрического факультета Федерального государственного автономного образовательного учреждения высшего образования «Российский национальный исследовательский медицинский университет имени Н.И.Пирогова» Министерства здравоохранения Российской Федерации; главный внештатный детский специалист по профилактической медицине Министерства здравоохранения Российской Федерации; вице-президент Глобального педиатрического пульмонологического альянса
119333, Москва, ул. Фотиевой, 10, стр. 1
117997, Москва, ул. Островитянова, 1
тел.: (499) 400-47-33
А. А. Баранов
Россия
Баранов Александр Александрович – д. м. н., профессор, академик Российской академии наук, Почетный президент Союза педиатров России; главный внештатный специалист-педиатр Министерства здравоохранения Российской Федерации; советник руководителя Научноисследовательского института педиатрии и охраны здоровья детей Федерального государственного бюджетного учреждения «Центральная клиническая больница Российской академии наук» Министерства науки и высшего образования Российской Федерации
119333, Москва, ул. Фотиевой, 10, стр. 1
тел.: (499) 137-01-97
Список литературы
1. Ogimi C., Kim Y.J., Martin E.T. et al. What’s new with the old coronaviruses? J. Pediatric Infect. Dis. Soc. 2020; 9 (2): 210–217. DOI: 10.1093/jpids/piaa037.
2. Chang L.Y., Lu C.Y., Chao P.L. et al. Viral infection associated with Kawasaki disease. J. Formos. Med. Assoc. 2014; 113 (3): 148–154. DOI: 10.1016/j.jfma.2013.12.008.
3. Биоград. Часто задаваемые вопросы по коронавирусной инфекции кошек. Доступно на: https://www.biograd.ru/content/часто-задаваемые-вопросы-по-коронавирусной-инфекции-кошек.
4. Jiang S., Shi Z., Shu Y. et al. A distinct name is needed for the new coronavirus. Lancet. 2020; 395 (10228): 949. DOI: 10.1016/S0140-6736(20)30419-0.
5. Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage В betacoronaviruses. Nat. Microbiol. 2020; 5 (4): 562–569. DOI: 10.1038/s41564-020-0688-y.
6. Zhou P., Yang X., Wang X. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579 (7798): 270–273. DOI: 10.1038/s41586020-2012-7.
7. Khera R., Clark C., Lu Y. et al. Association of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers with the risk of hospitalization and death in hypertensive patients with coronavirus disease-19. medRxiv [Preprint. Posted: 2020, May 19]. DOI: 10.1101/2020.05.17.20104943.
8. WebMD. Coronavirus in kids and babies. Available at: https://www.webmd.com/lung/coronavirus-covid-19-babies-children#1 [Accessed: May 19, 2020].
9. Русинова Д.С., Никонов Е.Л., Намазова-Баранова Л.С. и др. Первые результаты наблюдения за детьми, переболевшими COVID-19 в Москве. Педиатрическая фармакология. 2020; 17 (2): 95–102. DOI: 10.15690/pf.v17i2.2095
10. Jackson D.J., Busse W.W., Bacharier L.B. et al. Association of respiratory allergy, asthma, and expression of the SARSCoV-2 receptor ACE2. J. Allergy Clin. Immunol. 2020; 146 (1): 203–206.e3. DOI: 10.1016/j.jaci.2020.04.009.
11. Kimura H., Francisco D., Conway M. et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J. Allergy Clin. Immunol. 2020; 146 (1): 80–88.e8. DOI: 10.1016/j.jaci.2020.05.004.
12. Gemmati D., Bramanti B., Serino M.L. et al. COVID-19 and individual genetic susceptibility/receptivity: Role of ACE1/ACE2 genes, immunity, inflammation and coagulation. Might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males? Int. J. Mol. Sci. 2020; 21 (10): 3474. DOI: 10.3390/ijms21103474.
13. Zang R., Gomez Castro M.F., McCune B.T. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 2020; 5 (47): eabc3582. DOI: 10.1126/sciimmunol.abc3582.
14. Министерство здравоохранения Российской Федерации. Временные методические рекомендации: Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 7. (03.06.2020). Доступно на: https://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/original/03062020_%D0%9CR_COVID-19_v7.pdf
15. Министерство здравоохранения Российской Федерации. Методические рекомендации: Особенности клинических проявлений и лечения заболевания, вызванного новой коронавирусной инфекцией (COVID-19) у детей. Версия 2 (03.07.2020). Доступно на: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/050/914/original/03062020_%D0%B4%D0%B5%D1%82%D0%B8_COVID-19_v2.pdf
16. Shen K., Yang Y. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J. Pediatr. 2020; 16 (3): 219–221. DOI: 10.1007/s12519-02000344-6.
17. Lee P.I., Hu Y.L., Chen P.Y. et al. Are children less susceptible to COVID-19? J. Microb. Immunol. Infect. 2020; 53 (3): 371–372. DOI: 10.1016/j.jmii.2020.02.011.
18. Molloy E.J., Bearer C.F. COVID-19 in children and altered inflammatory responses. Pediatr. Res. 2020; 88 (3): 340–341. DOI: 10.1038/s41390-020-0881-y.
19. Cristiani L., Mancino E., Matera L. et al. Will children reveal their secret? The coronavirus dilemma. Eur. Respir. J. 2020; 55 (4): 2000749. DOI: 10.1183/13993003.00749-2020.
20. Ма Х., Su L., Zhang Y. et al. Do children need a longer time to shed SARS-CoV-2 in stool than adults? J. Microbiol. Immunol. Infect. 2020; 53 (3): 373–376. DOI: 10.1016/j.jmii.2020.03.010.
21. Zhang J., Wang S., Xue Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J. Med. Virol. 2020; 92 (6): 680–682. DOI: 10.1002/jmv.25742.
22. Saleem H., Rahman J., Aslam N. et al. Coronavirus disease 2019 (COVID-19) in children: vulnerable or spared? A systematic review. Cureus. 2020; 12 (5): e8207. DOI: 10.7759/cureus.8207.
23. Ji L.N., Chao S., Wang Y.J. et al. Clinical features of pediatric patients with COVID-19: a report of two family claster cases. World J. Pediatr. 2020; 16 (3): 267–270. DOI: 10.1007/s12519-020-00356-2.
24. Rahimzadeh G., Noghabi M.E., Elyaderani F.K. et al. COVID-19 infection in Iranian children: A case series of 9 patients. J. Pediatr. Rev. 2020; 8 (2): 139–144. DOI: 10.32598/jpr.8.2.139.
25. Park J.Y., Han M.S., Park K.U. et al. First pediatric case of coronavirus disease 2019 in Korea. J. Korean Med. Sci. 2020; 35 (1): e124. DOI: 10.3346/jkms.2020.35.e124.
26. Kam K.Q., Yung C.F., Cui L. et al. A well infant with coronavirus disease 2019 (Covid-19) with high viral load. Clin. Infest. Dis. 2020; 71 (15): 847–849. DOI: 10.1093/cid/ciaa201.
27. Zheng M., Gao Y., Wang G. et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 2020; 17 (5): 533–535. DOI: 10.1038/s41423-0200402-2.
28. Смирнов В.С., Тотолян А.А. Врожденный иммунитет при коронавирусной инфекции. Инфекция и иммунитет. 2020; 10 (2): 259–268. DOI: 10.15789/2220-7619-III-1440
29. Mehta P., McAuley D.F., Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395 (10229): 1033–1034. DOI: 10.1016/S0140-6736(20)30628-0.
30. Ngu S.C., Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 2020; 69 (6): 973–974. DOI: 10.1136/gutjnl-2020-321195.
31. Krzysztof N.J., Christoffer L.J., Rahul K. et al. (2020). Age, inflammation and disease location are critical determinants of intestinal expression of Sars-Cov-2 receptor Ace2 and Tmprss2 in inflammatory bowel disease. Gastroenterology. 2020; 159 (3): 1151–1154. DOI: 10.1053/j.gastro.2020.05.030.
32. Paediatric Intensive Care Society. PICS Statement regarding novel presentation of multi-system inflammatory disease. Available at: https://pccsociety.uk/news/pics-statement-regarding-novel-presentation-of-multi-system-inflammatory-disease
33. Riphagen S., Gomez X., Gonzalez-Martinez C. et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020; 395 (10237): 1607–1608. DOI: 10.1016/S0140-6736(20)31094-1.
34. Royal College of Paediatrics and Child Health. Guidance: Paediatric multisystem inflammatory syndrome temporally associated with COVID-19. Available at: https://www.rcpch.ac.uk/sites/default/files/2020-05/COVID-19-Paediatric-multisystem-%20inflammatory%20syndrome-20200501.pdf [Accessed: June 29, 2020].
35. NYС Heatlh. 2020 Health Alert #13: Pediatric multi-system inflammatory syndrome potentially associated with COVID-19. Available at: https://www1.nyc.gov/assets/doh/downloads/pdf/han/alert/2020/covid-19-pediatric-multi-system-inflammatory-syndrome.pdf [Accessed: June 29, 2020].
36. Greene A.G., Saleh M., Roseman E., Sinert R. Toxic shock-like syndrome and COVID-19: A case report of multisystem inflammatory syndrome in children (MIS-C). Am. J. Emerg. Med. [Preprint. Posted: 2020, Jun. 6]. DOI: 10.1016/j.ajem.2020.05.117.
37. Schnapp A., Abulhija H., Maly A. et al. Introductory histopathological findings may shed light on COVID-19 paediatric hyperinflammatory shock syndrome. J. Eur. Acad. Dermatol. Venereol. [Preprint. Posted: 2020, Jun. 13]. DOI: 10.1111/jdv.16749.
38. Waltuch T., Gill P., Zinns L.E. et al. Features of COVID-19 post-infectious cytokine release syndrome in children presenting to the emergency department. Am. J. Emerg. Med. [Preprint. Posted: 2020, May 23]. DOI: 10.1016/j.ajem.2020.05.058.
39. Toubiana J., Poirault C., Corsia A. et al. Kawasaki-like multisystem inflammatory syndrome in children dring the covid-19 pandemic in Paris, France: prospective observational study. Br. Med. J. 2020; 369: m2094. DOI: 10.1136/bmj.m2094.
40. Grimaud M., Starck J., Levy M. et al. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Ann. Intensive Care. 2020; 10 (1): 69. DOI: 10.1186/s13613-02000690-8.
41. Jenco M., ed. CDC details COVID-19-related inflammatory syndrome in children. AAP News. 2020, May 14. Available at: https://www.aappublications.org/news/2020/05/14/covid19inflammatory051420 [Accessed: June 29, 2020].
42. Bernstein S. California latinos contracting COVID-19 at three times rate of whites. Medscape. 2020, Jul. 28. Available at: https://www.medscape.com/viewarticle/934777
43. Vigo D., Thornicroft G., Gureje O. The differential outcomes of coronavirus disease 2019 in low- and middle-income countries vs high-income countries. JAMA Psychiatry. 2020, Jun. 11. DOI: 10.1001/jamapsychiatry.2020.2174.
44. Taquet M., Quoibach J., Eiko I.F. et al. Mood homeostasis before and during the coronavirus disease 2019 (COVID-19) lockdown among students in The Netherlands. JAMA Psychiatry. [Preprint. Posted: 2020, Jul. 29]. DOI: 10.1001/jamapsychiatry.2020.2389.
45. Willson F.P. Many people lack protective antibodies after COVID-19 infection. Medscape. 2020, Jun. 24. Available at: https://www.medscape.com/viewarticle/932715
46. Kampf G., Todt D., Pfaender S., Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020; 104 (3): 246–251. DOI: 10.1016/j.jhin.2020.01.022.
47. Van Doremalen N., Bushmaker T., Morris D.H. et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020; 82 (16): 15641567. DOI: 10.1056/NEJMc2004973.
48. van Doremalen N., Bushmaker T., Morris D.H. et al. Aerosol and surface stability of Sars-Cov-2 as compared with Sars-Cov-1. N. Engl. J. Med. 2020; 382 (16): 15641567. DOI: 10.1056/NEJMc2004973.
49. Chia P.Y., Coleman K.K., Tan Y.K. et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients Singapore 2019 Novel Coronavirus Outbreak Research Team. Nat. Commun. 2020; 11 (1): 2800. DOI: 10.1038/s41467-020-16670-2.
50. West R., Michie S., Rubin G.J., AmlÔt R. Applying principles of behaviour change to reduce SARS-CoV-2 transmission. Nat. Hum. Behav. 2020; 4 (5): 451–459. DOI: 10.1038/s41562-020-0887-9.
51. Kam K.Q., Yung C.F., Cui L. et at. A well infant with coronavirus disease 2019 (COVID-19) with high viral load. Clin. Infect. Dis. 2020; 71 (15): 847–849. DOI: 10.1093/cid/ciaa201.
52. Cai J., Xu J., Lin D. et al. A case series of children with 2019 novel coronavirus infection: Clinical and epidemiological features. Clin. Infect. Dis. 2020; 71 (6): 1547–1551. DOI: 10.1093/cid/ciaa198.
53. Qiu H. Wu J., Hong L. et al. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect. Dis. 2020; 20 (6): 689–696. DOI: 10.1016/S1473-3099(20)30198-5.
54. Xu Y., Li X., Zhu B. et al. Characteristics of pediatric SARSCoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020; 26 (4): 502–505. DOI: 10.1038/s41591-020-0817-4.
55. Young B.E., Ong S.W., Kalimuddin S. et al. Epidemiologic features and clinical course of patients infected with SARSCoV-2 in Singapore. JAMA. 2020; 323 (15): 1488–1494. DOI: 10.1001/jama.2020.3204.
56. Cao Q., Chen Y.C., Chen C.L. et al. SARS-CoV-2 infection in children: Transmission dynamics and clinical characteristics. J. Formos. Med. Assoc. 2020; 119 (3): 670–673. DOI: 10.1016/j.jfma.2020.02.009.
57. Su L., Ma X., Yu H. et al. The different clinical characteristics of corona virus disease cases between children and their families in China – the character of children with COVID-19. Emerg. Microbes. Infect. 2020; 9 (1): 707–713. DOI: 10.1080/22221751.2020.1744483.
58. Stadnytskyi V., Bax C.E., Bax A. et al. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc. Natl. Acad. Sci. USA. 2020; 117 (22): 11875–11877. DOI: 10.1073/pnas.2006874117.
59. Zou L., Ruan F., Huang M. et al. Sars-Cov-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 2020; 382 (12): 1177–1179. DOI: 10.1056/NEJMc2001737.
60. Xu Y., Li X., Zhu B. et al. Characteristics of pediatric SARSCoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020; 26 (4): 502–505. DOI: 10.1038/s41591-020-0817-4.
61. Holshue M.L., DeBolt C., Lindquist S. et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 2020; 382 (10): 929–936. DOI: 10.1056/NEJMoa2001191.
62. Zeng H., Хu С., Fan J. et al. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA. 2020; 323 (18): 1848–1849. DOI: 10.1001/jama.2020.4861.
63. Dong L., Tian J., He S. et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA. 2020; 323 (18): 1846–1848. DOI: 10.1001/jama.2020.4621.
64. Hosier H., Farkadian S., Morotti R.A. et al. SARS-CoV-2 infection of the placenta. MedRxiv. [Preprint. Posted: 2020, May 12]. DOI: 10.1101/2020.04.30.20083907.
65. Lackey K.A., Pace R.M., Williams J.E. SARS-CoV-2 and human milk: What is the evidence? Matern. Child Nutr. 2020; e13032. [Preprint. Posted: 2020, May 30]. DOI: 10.1111/mcn.13032.
66. Goldstein E., Lipsitch M. Temporal rise in the proportion of younger adults and older adolescents among coronavirus disease (COVID-19) cases following the introduction of physical distancing measures, Germany, March to April 2020. EuroSurveill. 2020; 25 (17): 2000596. DOI: 10.2807/15607917.ES.2020.25.17.2000596.
67. Guan W.J., Ni Z.Y., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382 (18): 1708–1720. DOI: 10.1056/NEJMoa2002032.
68. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2020; 41 (2): 145–51. DOI: 10.3760/cma.j.issn.0254-6450.2020.02.003 (in Chinese).
69. World Health Organization. Coronavirus disease (COVID-2019) situation reports. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus2019/situation-reports
70. Намазова-Баранова Л.С., Баранов А.А. Коронавирусная инфекция у детей (состояние на февраль 2020). Педиатрическая фармакология. 2020;17 (1): 7–11.
71. Таgarro A., Epalza С., Santos М. et al. Screening and severity of coronavirus disease 2019 (COVID-19) in children in Madrid, Spain. JAMA Pediatr. [Preprint. Posted: 2020, Apr. 8]. DOI: 10.1001/jamapediatrics.2020.1346.
72. Coronavirus (COVID-19) in India – statistics and facts. Published by Sandhya Keelery. Statista. 2020, Sep. 15. Available at: https://www.statista.com/topics/6135/coronavirus-covid-19-outbreak-in-india/
73. Gudbjartsson D.F., Helgason A., Jonsson H. et al. Spread of SARS-CoV-2 in the Icelandic population. N. Engl. J. Med. 2020; 382 (24): 2302–2315. DOI: 10.1056/NEJMoa2006100.
74. Oran D.P., Topol E.J. Prevalence of asymptomatic SARSCoV-2 infection. Ann. Intern. Med. 2020; 173 (5): 362–367. DOI: 10.7326/M20-3012.
75. Faulconbridge G. Children with COVID-19 may be less contagious than adults, two UK epidemiologists say. Medscape. 2020, May 19. Available at: https://www.medscape.com/viewarticle/930763
76. Xia W., Shao J., Guo Y. et al. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr. Pulmonol. 2020; 55 (5): 11691174. DOI: 10.1002/ppul.24718.
77. Chen Z.M., Fu J.F., Shu Q. et al. Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World J. Pediatr. 2020; 16 (3): 240–246. DOI: 10.1007/s12519-020-00345-5.
78. Liu W., Zhang Q., Chen J. et al. Detection of COVID-19 in children in early January 2020 in Wuhan, China. N. Engl. J. Med. 2020; 382 (14): 1370–1371. DOI: 10.1056/NEJMc2003717.
79. Zheng F., Liao C., Fan Q.H. et al. Clinical characteristics of children with coronavirus disease 2019 in Hubei, China. Curr. Med. Sci. 2020; 40 (2): 275–280. DOI: 10.1007/s11596-020-2172-6.
80. Henry B.M., Lippi G., Plebani M. Laboratory abnormalities in children with novel coronavirus disease 2019. Clin. Chem. Lab. Med. 2020; 58 (7): 1135–1138. DOI: 10.1515/cclm-2020-0272.
81. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395 (10223): 507–513. DOI: 10.1016/S0140-6736(20)30211-7.
82. Worcester S. COVID-19 characteristics differ in children vs adults. Medscape. 2020, Mar. 13. Available at: https://www.medscape.com/viewarticle/926805
83. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. DOI: 10.1016/S01406736(20)30183-5.
84. Zhu N., Zhang D., Wang W. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020; 382 (8): 727–733. DOI: 10.1056/NEJMoa2001017.
85. Guan W., Ni Z., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; 382 (18): 1708–1720. DOI: 10.1056/NEJMoa2002032.
86. Baez D. Clinical findings of 6 children with COVID-19, risks factors associated with COVID-19 death, and detection of SARS-CoV-2 in different clinical specimens. 2020, Mar. 13. Available at: http://www.anmco.it/uploads/u_cms/media/2020/3/b0f67d369884729177067cdc663b497c.pdf
87. Lu X., Liqiong Z.L., Du H. et al. SARS-CoV-2 infection in children. N. Engl. J. Med. 2020; 382 (17): 1663–1665. DOI: 10.1056/NEJMc2005073.
88. Chan J.F., Yuan S., Kok K. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020; 395 (10223): 514–523. DOI: 10.1016/S01406736(20)30154-9.
89. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395 (10229): 1054–1062. DOI: 10.1016/S01406736(20)30566-3.
90. Zhang J., Dong X., Cao Y. et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020; 75 (7): 1730–1741. DOI: 10.1111/all.14238.
91. Dong Y., Мо Х., Нu Y. et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020; 145 (6): e20200702. DOI: 10.1542/peds.2020-0702.
92. Davies N.G., Klepac P., Liu Y. et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med. 2020; 26 (8): 1205–1211. DOI: 10.1038/s41591020-0962-9.
93. Oran D.P., Topol E.J. Prevalence of asymptomatic SARSCoV-2 infection: A narrative review. Ann. Intern. Med. 2020, Sep. DOI: 10.7326/M20-3012.
94. Shekerdemian L.S., Mahmood N.R., Wolfe K.K. et al. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units. JAMA Pediatr. 2020; 174 (9): 868–873. DOI: 10.1001/jamapediatrics.2020.1948.
95. Boulos M.N., Geraghty E.M. Geographical tracking and mapping of coronavirus disease COVID-19 / severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21 st century GIS technologies are supporting the global fight against outbreaks and epidemics. Int. J. Health Geogr. 2020; 19 (1): 8. DOI: 10.1186/s12942-020-00202-8.
96. Dashraath P., Jing Lin Jeslyn W., Mei Xian Karen L. et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am. J. Obstet. Gynecol. 2020; 222 (6): 521–531. DOI: 10.1016/j.ajog.2020.03.021.
97. Wang W., Xu Y., Gao R. et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020; 323 (18): 1843–1844. DOI: 10.1001/jama.2020.3786.
98. Chen H., Guo J., Wang C. et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020; 395 (10226): 809–815. DOI: 10.1016/S0140-6736(20)30360-3.
99. Coronavirus suspicion: 7-month-old baby sent to Dhaka from isolation ward in Kushtia. The Daily Star. 2020, Mar. 26. Available at: https://www.thedailystar.net/coronavirus-suspicion-in-kushtia-7-month-old-baby-isolation-ward-1886209
100. World Health Organization. COVID-19 and breatfeeding. Available at: https://www.who.int/news-room/commentaries/detail/breastfeeding-and-covid-19
101. Zeng L., Xia S., Yuan W. et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates воrn to mothers with COVID-19 in Wuhan, China. JAMA Pediatrics. 2020; 174 (7): 722–725. DOI: 10.1001/jamapediatrics.2020.0878.
102. Marzano A.V., Genovese G., Fabbrocini G. et al. Varicellalike exanthem as a specific COVID-19-associated skin manifestation: multicenter case series of 22 patients. J. Am. Acad. Dermatol. 2020; 83 (1): 280–285. DOI: 10.1016/j.jaad.2020.04.044.
103. Genovese G., Colonna C., Marzano A.V. Varicella-like exanthem associated with COVID-19 in an 8-year-old girl: a diagnostic clue? Pediatr. Dermatol. 2020; 37 (3): 435–436. DOI: 10.1111/pde.14201.
104. Moore J.T., Ricaldi J.N., Rose C.E. et al. Disparities in incidence of COVID-19 among underrepresented racial/ ethnic groups in counties identified as hotspots during June 5–18, 2020 – 22 States, February–June 2020. MMWR. Morb. Mortal. Wkly Rep. 2020; 69 (33): 1122–1126. DOI: 10.15585/mmwr.mm6933e1.
105. Politi L.S., Salsano E., Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. JAMA Neurol. 2020; 77 (8): 1028–1029. DOI: 10.1001/jamaneurol.2020.2125.
106. Benameur K., Agarwal A., Auld S.C. et al. Encephalopathy and encephalitis associated with cerebrospinal fluid cytokine alterations and coronavirus disease, Atlanta, Georgia, USA, 2020. Emerg. Infect. Dis. 2020; 26 (9): 2016–221. DOI: 10.3201/eid2609.202122.
107. Mao L., Jin H., Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77 (6): 683–690. DOI: 10.1001/jamaneurol.2020.1127.
108. Zubair A.S., McAlpine L.S., Gardin T. et al. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol. 2020; 77 (8): 1018–1027. DOI: 10.1001/jamaneurol.2020.2065.
109. Postolashe T.T., Benros M.E., Brenner L.A. Targetable biological mechanisms implicated in emergent psychiatric conditions associated with SARS-CoV-2 infection. JAMA Psychiatry. [Preprint. Posted: 2020, Jul. 31]. DOI: 10.1001/jamapsychiatry.2020.2795.
110. Guo L., Ren L., Yang S. et at. Profiting early humoral response to diagnose novel coronavirus disease (COVID-19). Clin. Infect. Dis. 2020; 71 (15): 778–785. DOI: 10.1093/cid/ciaa310.
111. Gao Y., Li T., Han M. et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020; 92 (7): 791–796. DOI: 10.1002/jmv.25770.
112. Cummings M.J., Baldwin M.R., Abrams D. et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020; 395 (10239): 1763–1770. DOI: 10.1016/S0140-6736(20)31189-2.
113. Li W., Cui H., Li K. et al. Chest computed tomography in children with COVID-19 respiratory infection. Pediatr. Radiol. 2020; 50 (6): 796–799. DOI: 10.1007/s00247-020-04656-7.
114. DeBiasi R.L., Song X., Delaney M. et al. Severe COVID19 in children and young adults in the Washington, DC Metropolitan Region. J. Pediatr. 2020; 223: 199–203.e1. DOI: 10.1016/j.jpeds.2020.05.007.
115. D’Antiga L. Coronavimses and immunosuppressed patients: The facts during the third epidemic. Liver Transpl. 2020; 26 (6): 832–834. DOI: 10.1002/lt.25756.
116. Shuang Liu, Yuxiang Zhi, Sun Ying. COVID-19 and asthma: Reflection during the pandemic. Clin. Rev. Allergy Immunol. 2020; 59 (1): 78–88. DOI: 10.1007/s12016-020-08797-3.
117. Gianfrancesco M., Hyrich K.L., Al-Adely S. et al. Characteristics associated with hospitalisation for COVID19 in people with rheumatic disease: data from the COVID19 Global Rheumatology Alliance physician-reported registry. Ann. Rheum. Dis. 2020; 79 (7): 859–866. DOI: 10.1136/annrheumdis-2020-217871.
118. Price E., MacPhie E., Kay L. et al. Identifying rheumatic disease patients at high risk and requiring shielding during the COVID-19 pandemic. Clin. Med. 2020; 20 (3): 290–291. DOI: 10.7861/clinmed.2020-0160.
119. Louapre C., Collongues N., Stankoff B. et al. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurol. 2020; 77 (9): 1079. DOI: 10.1001/jamaneurol.2020.2581.
120. Rasmussen S.A., Smulian J.C., Lednicky J.A. et al. Coronavirus disease 2019 (COVID-19) and pregnancy: What obstetricians need to know. Am. J. Obstet. Gynecol. 2020; 222 (5): 415–426. DOI: 10.1016/j.ajog.2020.02.017.
121. Parazzini F., Bortolus R., Mauri P.A. et al. Delivery in pregnant women infected with SARS-CoV-2: A fast review. Int. J. Gynaecol. Obstet. 2020; 150 (1): 41–46. DOI: 10.1002/ijgo.13166.
122. Yang Z., Liu Y. vertical transmission of severe acute respiratory syndrome coronavirus 2: A systematic review. Am. J. Perinatol. 2020; 37 (10): 1055–1060. DOI: 10.1055/s-00401712161.
123. Li Y., Zhao R., Zheng S. et al. Lack of vertical transmission of severe acute respiratory syndrome coronavirus 2, China. Emerg. Infect. Dis. 2020; 26 (6): 1335–1336. DOI: 10.3201/eid2606.200287.
124. Lu Q., Shi Y. Coronavirus disease (COVID-19) and neonate: What neonatologist need to know. J. Med. Virol. 2020; 92 (6): 564–567. DOI: 10.1002/jmv.25740.
125. Zhu H., Wang L., Fang C. et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl. Pediatr. 2020; 9 (1): 51–60. DOI: 10.21037/tp.2020.02.06.
126. Cui Y., Tian M., Huang D. et al. A 55-day-old female infant infected with COVID 19: Presenting with pneumonia, liver injury, and heart damage. J. Infect. Dis. 2020; 221 (11): 1775–1781. DOI: 10.1093/infdis/jiaa113.
127. COVID-19 Treatment Guidelines. Coronavirus disease 2019 (COVID-19) treatment guidelines. Available at: https://www.covid19treatmentguidelines.nih.gov [Accessed: June 29, 2020].
128. Boulware D.R., Pullen M.F., Bangdiwala A.S. et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19. N. Engl. J. Med. 2020; 383 (6): 517–525. DOI: 10.1056/NEJMoa2016638.
129. FitzGerald G.A. Misguided drug advice for COVID-19. Science. 2020; 367 (6485): 1434. DOI: 10.1126/science.abb8034.
130. Sheahan T.P., Sims A.C., Leist S.R. et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020; 11 (1): 222. DOI: 10.1038/s41467-019-13940-6.
131. Martinez M.A. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob. Agents Chemother. 2020; 64 (5): e00399-20. DOI: 10.1128/AAC.00399-20.
132. Сао В., Wang Y., Wen D. et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med. 2020; 382 (19): 1787–1799. DOI: 10.1056/NEJMoa2001282.
133. Grein J., Ohmagari N., Shin D. et al. Compassionate use of remdesivir for patients with severe COVID-19. N. Engl. J. Med. 2020; 382 (24): 2327–2336. DOI: 10.1056/NEJMoa2007016.
134. Gautret P., Lagier J., Parola P. et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents. 2020; 56 (1): 105949. DOI: 10.1016/j.ijantimicag.2020.105949.
135. Chang R., Sun W. Repositioning chloroquine as ideal antiviral prophylactic against COVID-19 – time is now. Preprints. [Preprint. Posted: 2020, Mar. 17]. DOI: 10.20944/preprints202003.0279.v1.
136. Advisory on the use of hydroxy-chloroquine as prophylaxis for SARS-CoV-2 infection. Scribd. Available at: https://ru.scribd.com/document/452876030/Advisory-on-the-Use-ofHydroxy-chloroquin-as-Prophylaxis-for-SARS-CoV-2-Infection-1
137. Velthuis A.J., van den Worm S.H., Sims A.C. et al. Zn2+ Inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010; 6 (11): e1001176. DOI: 10.1371/journal.ppat.1001176.
138. Santoli J.M., Lindley M.C., DeSilva M.B. et al. Effects of the COVID-19 pandemic on routine pediatric vaccine ordering and administration – United States, 2020. MMWR. Morb. Mortal. Weekly Rep. 2020; 69 (19): 591–593. DOI: 10.15585/mmwr.mm6919e2.
139. Gellin B. Why vaccine rumours stick – and getting them unstuck. Lancet. 2020; 396 (10247): 303–304. DOI: 10.1016/s0140-6736(20)31640-8.
140. Bramer C.A., Kimmins L.M., Swanson R. et al. Decline in child vaccination coverage during the COVID-19 pandemic – Michigan Care Improvement Registry, May 2016 May 2020. Am. J. Transplant. 2020; 20 (7): 1930–1931. DOI: 10.1111/ajt.16112.
141. Bousquet J., Anto J.M., Iaccarino G. et al. Is diet partly responsible for differences in COVID-19 death rates between and within countries? Clin. Transl. Allergy. 2020; 10 (1): 16. DOI: 10.1186/s13601-020-00323-0.
142. Parikh P.A., Shah B.V., Phatak A.G. et al. COVID-19 pandemic: Knowledge and perceptions of the public and healthcare professionals. Cureus. 2020; 12 (5): e8144. DOI: 10.7759/cureus.8144.
Рецензия
Для цитирования:
Намазова-Баранова Л.С., Баранов А.А. COVID-19 и дети. Пульмонология. 2020;30(5):609-628. https://doi.org/10.18093/0869-0189-2020-30-5-609-628
For citation:
Namazova-Baranova L.S., Baranov A.A. COVID-19 and children. PULMONOLOGIYA. 2020;30(5):609-628. https://doi.org/10.18093/0869-0189-2020-30-5-609-628