Preview

PULMONOLOGIYA

Advanced search

COVID-19 and children

https://doi.org/10.18093/0869-0189-2020-30-5-609-628

Abstract

In December 2019, the world became aware of an epidemic of a very severe infection caused by a new coronavirus. Later, WHO declared a pandemic. The pediatricians were ready for the worst. The novel infection was expected to promptly spread among the most vulnerable population, children. But the clinicians soon understood that the situation is unbelievable: adults develop severe disease and die, while the children remain almost excluded from the infection spreading. 9 months have passed in the “new reality”. The humankind was learning to respond to the new infection challenge by empirical search for the potential therapeutic and diagnostic solutions and conducting wide clinical studies in parallel. A few questions have been answered because of consolidated and/or isolated actions of researchers and clinicians at the national, regional, and international levels. However, most aspects of how the new coronavirus affects the humans, including children, is still unclear and our knowledge of these aspects cannot be transferred in the routine practice. This review presents latest understanding of the course of the novel coronavirus infection in children, its treatment and outcomes.

About the Authors

L. S. Namazova-Baranova
Pediatrics and Child Health Research Institute of the “Central Clinical Hospital of the Russian Academy of Sciences”, Ministry of Education and Science of Russia; N.I.Pirogov Federal Russian National Research Medical University, Healthcare Ministry of Russia
Russian Federation

Leyla S. Namazova-Baranova – Doctor of Medicine, Professor, Academician of the Russian Academy of Sciences, President of the Union of Pediatricians of Russia; Head of Pediatrics and Child Health Research Institute of the “Central Clinical Hospital of the Russian Academy of Sciences”, Ministry of Education and Science of Russia; Head of Faculty Pediatrics Department, Pediatric Faculty, N.I.Pirogov Federal Russian National Research Medical University, Healthcare Ministry of Russia; Chief Pediatric Specialist in Preventive Medicine, Healthcare Ministry of Russia; Vice-President of the Global Pediatric Pulmonological Alliance

ul. Fotievoy 10, buld. 1, Moscow, 119333
ul. Ostrovityanova 1, Moscow, 117997
tel.: (499) 400-47-33 



A. A. Baranov
Pediatrics and Child Health Research Institute of the “Central Clinical Hospital of the Russian Academy of Sciences”, Ministry of Education and Science of Russia
Russian Federation

Aleksandr A. Baranov – Doctor of Medicine, Professor, Academician of the Russian Academy of Sciences, Honorary President of the Union of Russian Pediatricians; Chief Pediatrician of Healthcare Ministry of Russia; Advisor to the Head, Pediatrics and Child Health Research Institute of the “Central Clinical Hospital of the Russian Academy of Sciences”, Ministry of Education and Science of Russia

ul. Fotievoy 10, buld. 1, Moscow, 119333
tel.: (499) 137-01-97 



References

1. Ogimi C., Kim Y.J., Martin E.T. et al. What’s new with the old coronaviruses? J. Pediatric Infect. Dis. Soc. 2020; 9 (2): 210–217. DOI: 10.1093/jpids/piaa037.

2. Chang L.Y., Lu C.Y., Chao P.L. et al. Viral infection associated with Kawasaki disease. J. Formos. Med. Assoc. 2014; 113 (3): 148–154. DOI: 10.1016/j.jfma.2013.12.008.

3. Biograd. [Frequently asked questions about coronavirus infection in cats]. Available at: https://www.biograd.ru/content/часто-задаваемые-вопросы-по-коронавирусной-инфекции-кошек (in Russian).

4. Jiang S., Shi Z., Shu Y. et al. A distinct name is needed for the new coronavirus. Lancet. 2020; 395 (10228): 949. DOI: 10.1016/S0140-6736(20)30419-0.

5. Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage В betacoronaviruses. Nat. Microbiol. 2020; 5 (4): 562–569. DOI: 10.1038/s41564-020-0688-y.

6. Zhou P., Yang X., Wang X. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579 (7798): 270–273. DOI: 10.1038/s41586020-2012-7.

7. Khera R., Clark C., Lu Y. et al. Association of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers with the risk of hospitalization and death in hypertensive patients with coronavirus disease-19. medRxiv [Preprint. Posted: 2020, May 19]. DOI: 10.1101/2020.05.17.20104943.

8. WebMD. Coronavirus in kids and babies. Available at: https://www.webmd.com/lung/coronavirus-covid-19-babies-children#1 [Accessed: May 19, 2020].

9. Rusinova D.S., Nikonov E.L., NamazovaBaranova L.S. et al. [Primary observational results on children who have been exposed to COVID-19 in Moscow]. Pediatricheskaya farmakologiya. 2020; 17 (2): 95–102. DOI: 10.15690/pf.v17i2.2095 (in Russian).

10. Jackson D.J., Busse W.W., Bacharier L.B. et al. Association of respiratory allergy, asthma, and expression of the SARSCoV-2 receptor ACE2. J. Allergy Clin. Immunol. 2020; 146 (1): 203–206.e3. DOI: 10.1016/j.jaci.2020.04.009.

11. Kimura H., Francisco D., Conway M. et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J. Allergy Clin. Immunol. 2020; 146 (1): 80–88.e8. DOI: 10.1016/j.jaci.2020.05.004.

12. Gemmati D., Bramanti B., Serino M.L. et al. COVID-19 and individual genetic susceptibility/receptivity: Role of ACE1/ACE2 genes, immunity, inflammation and coagulation. Might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males? Int. J. Mol. Sci. 2020; 21 (10): 3474. DOI: 10.3390/ijms21103474.

13. Zang R., Gomez Castro M.F., McCune B.T. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 2020; 5 (47): eabc3582. DOI: 10.1126/sciimmunol.abc3582.

14. Ministry of Health of the Russian Federation. [Temporary guidelines: Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 7. 03.06.2020]. Available at: https://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/original/03062020_%D0%9CR_COVID-19_v7.pdf (in Russian).

15. Ministry of Health of the Russian Federation. [Guidelines: Features of clinical manifestations and treatment of the disease caused by new coronavirus infection (COVID-19) in children. Version 2 (03.07.2020)]. Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/050/914/original/03062020_%D0%B4%D0%B5%D1%82%D0%B8_COVID-19_v2.pdf (in Russian).

16. Shen K., Yang Y. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J. Pediatr. 2020; 16 (3): 219–221. DOI: 10.1007/s12519-02000344-6.

17. Lee P.I., Hu Y.L., Chen P.Y. et al. Are children less susceptible to COVID-19? J. Microb. Immunol. Infect. 2020; 53 (3): 371–372. DOI: 10.1016/j.jmii.2020.02.011.

18. Molloy E.J., Bearer C.F. COVID-19 in children and altered inflammatory responses. Pediatr. Res. 2020; 88 (3): 340–341. DOI: 10.1038/s41390-020-0881-y.

19. Cristiani L., Mancino E., Matera L. et al. Will children reveal their secret? The coronavirus dilemma. Eur. Respir. J. 2020; 55 (4): 2000749. DOI: 10.1183/13993003.00749-2020.

20. Ма Х., Su L., Zhang Y. et al. Do children need a longer time to shed SARS-CoV-2 in stool than adults? J. Microbiol. Immunol. Infect. 2020; 53 (3): 373–376. DOI: 10.1016/j.jmii.2020.03.010.

21. Zhang J., Wang S., Xue Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J. Med. Virol. 2020; 92 (6): 680–682. DOI: 10.1002/jmv.25742.

22. Saleem H., Rahman J., Aslam N. et al. Coronavirus disease 2019 (COVID-19) in children: vulnerable or spared? A systematic review. Cureus. 2020; 12 (5): e8207. DOI: 10.7759/cureus.8207.

23. Ji L.N., Chao S., Wang Y.J. et al. Clinical features of pediatric patients with COVID-19: a report of two family claster cases. World J. Pediatr. 2020; 16 (3): 267–270. DOI: 10.1007/s12519-020-00356-2.

24. Rahimzadeh G., Noghabi M.E., Elyaderani F.K. et al. COVID-19 infection in Iranian children: A case series of 9 patients. J. Pediatr. Rev. 2020; 8 (2): 139–144. DOI: 10.32598/jpr.8.2.139.

25. Park J.Y., Han M.S., Park K.U. et al. First pediatric case of coronavirus disease 2019 in Korea. J. Korean Med. Sci. 2020; 35 (1): e124. DOI: 10.3346/jkms.2020.35.e124.

26. Kam K.Q., Yung C.F., Cui L. et al. A well infant with coronavirus disease 2019 (Covid-19) with high viral load. Clin. Infest. Dis. 2020; 71 (15): 847–849. DOI: 10.1093/cid/ciaa201.

27. Zheng M., Gao Y., Wang G. et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 2020; 17 (5): 533–535. DOI: 10.1038/s41423-0200402-2.

28. Smirnov V.S., Totolyan A.A. [Innate immunity in coronavirus infection]. Infektsiya i immunitet. 2020; 10 (2): 259–268. DOI: 10.15789/2220-7619-III-1440 (in Russian).

29. Mehta P., McAuley D.F., Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395 (10229): 1033–1034. DOI: 10.1016/S0140-6736(20)30628-0.

30. Ngu S.C., Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 2020; 69 (6): 973–974. DOI: 10.1136/gutjnl-2020-321195.

31. Krzysztof N.J., Christoffer L.J., Rahul K. et al. (2020). Age, inflammation and disease location are critical determinants of intestinal expression of Sars-Cov-2 receptor Ace2 and Tmprss2 in inflammatory bowel disease. Gastroenterology. 2020; 159 (3): 1151–1154. DOI: 10.1053/j.gastro.2020.05.030.

32. Paediatric Intensive Care Society. PICS Statement regarding novel presentation of multi-system inflammatory disease. Available at: https://pccsociety.uk/news/pics-statement-regarding-novel-presentation-of-multi-system-inflammatory-disease

33. Riphagen S., Gomez X., Gonzalez-Martinez C. et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020; 395 (10237): 1607–1608. DOI: 10.1016/S0140-6736(20)31094-1.

34. Royal College of Paediatrics and Child Health. Guidance: Paediatric multisystem inflammatory syndrome temporally associated with COVID-19. Available at: https://www.rcpch.ac.uk/sites/default/files/2020-05/COVID-19-Paediatric-multisystem-%20inflammatory%20syndrome-20200501.pdf [Accessed: June 29, 2020].

35. NYС Heatlh. 2020 Health Alert #13: Pediatric multi-system inflammatory syndrome potentially associated with COVID-19. Available at: https://www1.nyc.gov/assets/doh/downloads/pdf/han/alert/2020/covid-19-pediatric-multi-system-inflammatory-syndrome.pdf [Accessed: June 29, 2020].

36. Greene A.G., Saleh M., Roseman E., Sinert R. Toxic shock-like syndrome and COVID-19: A case report of multisystem inflammatory syndrome in children (MIS-C). Am. J. Emerg. Med. [Preprint. Posted: 2020, Jun. 6]. DOI: 10.1016/j.ajem.2020.05.117.

37. Schnapp A., Abulhija H., Maly A. et al. Introductory histopathological findings may shed light on COVID-19 paediatric hyperinflammatory shock syndrome. J. Eur. Acad. Dermatol. Venereol. [Preprint. Posted: 2020, Jun. 13]. DOI: 10.1111/jdv.16749.

38. Waltuch T., Gill P., Zinns L.E. et al. Features of COVID-19 post-infectious cytokine release syndrome in children presenting to the emergency department. Am. J. Emerg. Med. [Preprint. Posted: 2020, May 23]. DOI: 10.1016/j.ajem.2020.05.058.

39. Toubiana J., Poirault C., Corsia A. et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. Br. Med. J. 2020; 369: m2094. DOI: 10.1136/bmj.m2094.

40. Grimaud M., Starck J., Levy M. et al. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Ann. Intensive Care. 2020; 10 (1): 69. DOI: 10.1186/s13613-02000690-8.

41. Jenco M., ed. CDC details COVID-19-related inflammatory syndrome in children. AAP News. 2020, May 14. Available at: https://www.aappublications.org/news/2020/05/14/covid19inflammatory051420 [Accessed: June 29, 2020].

42. Bernstein S. California latinos contracting COVID-19 at three times rate of whites. Medscape. 2020, Jul. 28. Available at: https://www.medscape.com/viewarticle/934777

43. Vigo D., Thornicroft G., Gureje O. The differential outcomes of coronavirus disease 2019 in low- and middle-income countries vs high-income countries. JAMA Psychiatry. 2020, Jun. 11. DOI: 10.1001/jamapsychiatry.2020.2174.

44. Taquet M., Quoibach J., Eiko I.F. et al. Mood homeostasis before and during the coronavirus disease 2019 (COVID-19) lockdown among students in The Netherlands. JAMA Psychiatry. [Preprint. Posted: 2020, Jul. 29]. DOI: 10.1001/jamapsychiatry.2020.2389.

45. Willson F.P. Many people lack protective antibodies after COVID-19 infection. Medscape. 2020, Jun. 24. Available at: https://www.medscape.com/viewarticle/932715

46. Kampf G., Todt D., Pfaender S., Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020; 104 (3): 246–251. DOI: 10.1016/j.jhin.2020.01.022.

47. Van Doremalen N., Bushmaker T., Morris D.H. et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020; 82 (16): 15641567. DOI: 10.1056/NEJMc2004973.

48. van Doremalen N., Bushmaker T., Morris D.H. et al. Aerosol and surface stability of Sars-Cov-2 as compared with Sars-Cov-1. N. Engl. J. Med. 2020; 382 (16): 15641567. DOI: 10.1056/NEJMc2004973.

49. Chia P.Y., Coleman K.K., Tan Y.K. et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients Singapore 2019 Novel Coronavirus Outbreak Research Team. Nat. Commun. 2020; 11 (1): 2800. DOI: 10.1038/s41467-020-16670-2.

50. West R., Michie S., Rubin G.J., AmlÔt R. Applying principles of behaviour change to reduce SARS-CoV-2 transmission. Nat. Hum. Behav. 2020; 4 (5): 451–459. DOI: 10.1038/s41562-020-0887-9.

51. Kam K.Q., Yung C.F., Cui L. et at. A well infant with coronavirus disease 2019 (COVID-19) with high viral load. Clin. Infect. Dis. 2020; 71 (15): 847–849. DOI: 10.1093/cid/ciaa201.

52. Cai J., Xu J., Lin D. et al. A case series of children with 2019 novel coronavirus infection: Clinical and epidemiological features. Clin. Infect. Dis. 2020; 71 (6): 1547–1551. DOI: 10.1093/cid/ciaa198.

53. Qiu H. Wu J., Hong L. et al. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect. Dis. 2020; 20 (6): 689–696. DOI: 10.1016/S1473-3099(20)30198-5.

54. Xu Y., Li X., Zhu B. et al. Characteristics of pediatric SARSCoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020; 26 (4): 502–505. DOI: 10.1038/s41591-020-0817-4.

55. Young B.E., Ong S.W., Kalimuddin S. et al. Epidemiologic features and clinical course of patients infected with SARSCoV-2 in Singapore. JAMA. 2020; 323 (15): 1488–1494. DOI: 10.1001/jama.2020.3204.

56. Cao Q., Chen Y.C., Chen C.L. et al. SARS-CoV-2 infection in children: Transmission dynamics and clinical characteristics. J. Formos. Med. Assoc. 2020; 119 (3): 670–673. DOI: 10.1016/j.jfma.2020.02.009.

57. Su L., Ma X., Yu H. et al. The different clinical characteristics of corona virus disease cases between children and their families in China – the character of children with COVID-19. Emerg. Microbes. Infect. 2020; 9 (1): 707–713. DOI: 10.1080/22221751.2020.1744483.

58. Stadnytskyi V., Bax C.E., Bax A. et al. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc. Natl. Acad. Sci. USA. 2020; 117 (22): 11875–11877. DOI: 10.1073/pnas.2006874117.

59. Zou L., Ruan F., Huang M. et al. Sars-Cov-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 2020; 382 (12): 1177–1179. DOI: 10.1056/NEJMc2001737.

60. Xu Y., Li X., Zhu B. et al. Characteristics of pediatric SARSCoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020; 26 (4): 502–505. DOI: 10.1038/s41591-020-0817-4.

61. Holshue M.L., DeBolt C., Lindquist S. et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 2020; 382 (10): 929–936. DOI: 10.1056/NEJMoa2001191.

62. Zeng H., Хu С., Fan J. et al. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA. 2020; 323 (18): 1848–1849. DOI: 10.1001/jama.2020.4861.

63. Dong L., Tian J., He S. et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA. 2020; 323 (18): 1846–1848. DOI: 10.1001/jama.2020.4621.

64. Hosier H., Farkadian S., Morotti R.A. et al. SARS-CoV-2 infection of the placenta. MedRxiv. [Preprint. Posted: 2020, May 12]. DOI: 10.1101/2020.04.30.20083907.

65. Lackey K.A., Pace R.M., Williams J.E. SARS-CoV-2 and human milk: What is the evidence? Matern. Child Nutr. 2020; e13032. [Preprint. Posted: 2020, May 30]. DOI: 10.1111/mcn.13032.

66. Goldstein E., Lipsitch M. Temporal rise in the proportion of younger adults and older adolescents among coronavirus disease (COVID-19) cases following the introduction of physical distancing measures, Germany, March to April 2020. EuroSurveill. 2020; 25 (17): 2000596. DOI: 10.2807/15607917.ES.2020.25.17.2000596.

67. Guan W.J., Ni Z.Y., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382 (18): 1708–1720. DOI: 10.1056/NEJMoa2002032.

68. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2020; 41 (2): 145–51. DOI: 10.3760/cma.j.issn.0254-6450.2020.02.003 (in Chinese).

69. World Health Organization. Coronavirus disease (COVID-2019) situation reports. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus2019/situation-reports

70. Namazova-Baranova L.S., Baranov A.A. [Coronavirus infection in children (Situation on February 2020)]. Pediatricheskaya farmakologiya. 2020; 17 (1): 7–11. DOI: 10.15690/pf.v17i1.2076 (in Russian).

71. Таgarro A., Epalza С., Santos М. et al. Screening and severity of coronavirus disease 2019 (COVID-19) in children in Madrid, Spain. JAMA Pediatr. [Preprint. Posted: 2020, Apr. 8]. DOI: 10.1001/jamapediatrics.2020.1346.

72. Coronavirus (COVID-19) in India – statistics and facts. Published by Sandhya Keelery. Statista. 2020, Sep. 15. Available at: https://www.statista.com/topics/6135/coronavirus-covid-19-outbreak-in-india/

73. Gudbjartsson D.F., Helgason A., Jonsson H. et al. Spread of SARS-CoV-2 in the Icelandic population. N. Engl. J. Med. 2020; 382 (24): 2302–2315. DOI: 10.1056/NEJMoa2006100.

74. Oran D.P., Topol E.J. Prevalence of asymptomatic SARSCoV-2 infection. Ann. Intern. Med. 2020; 173 (5): 362–367. DOI: 10.7326/M20-3012.

75. Faulconbridge G. Children with COVID-19 may be less contagious than adults, two UK epidemiologists say. Medscape. 2020, May 19. Available at: https://www.medscape.com/viewarticle/930763

76. Xia W., Shao J., Guo Y. et al. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr. Pulmonol. 2020; 55 (5): 11691174. DOI: 10.1002/ppul.24718.

77. Chen Z.M., Fu J.F., Shu Q. et al. Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World J. Pediatr. 2020; 16 (3): 240–246. DOI: 10.1007/s12519-020-00345-5.

78. Liu W., Zhang Q., Chen J. et al. Detection of COVID-19 in children in early January 2020 in Wuhan, China. N. Engl. J. Med. 2020; 382 (14): 1370–1371. DOI: 10.1056/NEJMc2003717.

79. Zheng F., Liao C., Fan Q.H. et al. Clinical characteristics of children with coronavirus disease 2019 in Hubei, China. Curr. Med. Sci. 2020; 40 (2): 275–280. DOI: 10.1007/s11596-020-2172-6.

80. Henry B.M., Lippi G., Plebani M. Laboratory abnormalities in children with novel coronavirus disease 2019. Clin. Chem. Lab. Med. 2020; 58 (7): 1135–1138. DOI: 10.1515/cclm-2020-0272.

81. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395 (10223): 507–513. DOI: 10.1016/S0140-6736(20)30211-7.

82. Worcester S. COVID-19 characteristics differ in children vs adults. Medscape. 2020, Mar. 13. Available at: https://www.medscape.com/viewarticle/926805

83. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. DOI: 10.1016/S01406736(20)30183-5.

84. Zhu N., Zhang D., Wang W. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020; 382 (8): 727–733. DOI: 10.1056/NEJMoa2001017.

85. Guan W., Ni Z., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; 382 (18): 1708–1720. DOI: 10.1056/NEJMoa2002032.

86. Baez D. Clinical findings of 6 children with COVID-19, risks factors associated with COVID-19 death, and detection of SARS-CoV-2 in different clinical specimens. 2020, Mar. 13. Available at: http://www.anmco.it/uploads/u_cms/media/2020/3/b0f67d369884729177067cdc663b497c.pdf

87. Lu X., Liqiong Z.L., Du H. et al. SARS-CoV-2 infection in children. N. Engl. J. Med. 2020; 382 (17): 1663–1665. DOI: 10.1056/NEJMc2005073.

88. Chan J.F., Yuan S., Kok K. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020; 395 (10223): 514–523. DOI: 10.1016/S01406736(20)30154-9.

89. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395 (10229): 1054–1062. DOI: 10.1016/S01406736(20)30566-3.

90. Zhang J., Dong X., Cao Y. et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020; 75 (7): 1730–1741. DOI: 10.1111/all.14238.

91. Dong Y., Мо Х., Нu Y. et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020; 145 (6): e20200702. DOI: 10.1542/peds.2020-0702.

92. Davies N.G., Klepac P., Liu Y. et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med. 2020; 26 (8): 1205–1211. DOI: 10.1038/s41591020-0962-9.

93. Oran D.P., Topol E.J. Prevalence of asymptomatic SARSCoV-2 infection: A narrative review. Ann. Intern. Med. 2020, Sep. DOI: 10.7326/M20-3012.

94. Shekerdemian L.S., Mahmood N.R., Wolfe K.K. et al. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units. JAMA Pediatr. 2020; 174 (9): 868–873. DOI: 10.1001/jamapediatrics.2020.1948.

95. Boulos M.N., Geraghty E.M. Geographical tracking and mapping of coronavirus disease COVID-19 / severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21 st century GIS technologies are supporting the global fight against outbreaks and epidemics. Int. J. Health Geogr. 2020; 19 (1): 8. DOI: 10.1186/s12942-020-00202-8.

96. Dashraath P., Jing Lin Jeslyn W., Mei Xian Karen L. et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am. J. Obstet. Gynecol. 2020; 222 (6): 521–531. DOI: 10.1016/j.ajog.2020.03.021.

97. Wang W., Xu Y., Gao R. et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020; 323 (18): 1843–1844. DOI: 10.1001/jama.2020.3786.

98. Chen H., Guo J., Wang C. et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020; 395 (10226): 809–815. DOI: 10.1016/S0140-6736(20)30360-3.

99. Coronavirus suspicion: 7-month-old baby sent to Dhaka from isolation ward in Kushtia. The Daily Star. 2020, Mar. 26. Available at: https://www.thedailystar.net/coronavirus-suspicion-in-kushtia-7-month-old-baby-isolation-ward-1886209

100. World Health Organization. COVID-19 and breatfeeding. Available at: https://www.who.int/news-room/commentaries/detail/breastfeeding-and-covid-19

101. Zeng L., Xia S., Yuan W. et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates воrn to mothers with COVID-19 in Wuhan, China. JAMA Pediatrics. 2020; 174 (7): 722–725. DOI: 10.1001/jamapediatrics.2020.0878.

102. Marzano A.V., Genovese G., Fabbrocini G. et al. Varicellalike exanthem as a specific COVID-19-associated skin manifestation: multicenter case series of 22 patients. J. Am. Acad. Dermatol. 2020; 83 (1): 280–285. DOI: 10.1016/j.jaad.2020.04.044.

103. Genovese G., Colonna C., Marzano A.V. Varicella-like exanthem associated with COVID-19 in an 8-year-old girl: a diagnostic clue? Pediatr. Dermatol. 2020; 37 (3): 435–436. DOI: 10.1111/pde.14201.

104. Moore J.T., Ricaldi J.N., Rose C.E. et al. Disparities in incidence of COVID-19 among underrepresented racial/ ethnic groups in counties identified as hotspots during June 5–18, 2020 – 22 States, February–June 2020. MMWR. Morb. Mortal. Wkly Rep. 2020; 69 (33): 1122–1126. DOI: 10.15585/mmwr.mm6933e1.

105. Politi L.S., Salsano E., Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. JAMA Neurol. 2020; 77 (8): 1028–1029. DOI: 10.1001/jamaneurol.2020.2125.

106. Benameur K., Agarwal A., Auld S.C. et al. Encephalopathy and encephalitis associated with cerebrospinal fluid cytokine alterations and coronavirus disease, Atlanta, Georgia, USA, 2020. Emerg. Infect. Dis. 2020; 26 (9): 2016–221. DOI: 10.3201/eid2609.202122.

107. Mao L., Jin H., Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77 (6): 683–690. DOI: 10.1001/jamaneurol.2020.1127.

108. Zubair A.S., McAlpine L.S., Gardin T. et al. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol. 2020; 77 (8): 1018–1027. DOI: 10.1001/jamaneurol.2020.2065.

109. Postolashe T.T., Benros M.E., Brenner L.A. Targetable biological mechanisms implicated in emergent psychiatric conditions associated with SARS-CoV-2 infection. JAMA Psychiatry. [Preprint. Posted: 2020, Jul. 31]. DOI: 10.1001/jamapsychiatry.2020.2795.

110. Guo L., Ren L., Yang S. et at. Profiting early humoral response to diagnose novel coronavirus disease (COVID-19). Clin. Infect. Dis. 2020; 71 (15): 778–785. DOI: 10.1093/cid/ciaa310.

111. Gao Y., Li T., Han M. et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020; 92 (7): 791–796. DOI: 10.1002/jmv.25770.

112. Cummings M.J., Baldwin M.R., Abrams D. et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020; 395 (10239): 1763–1770. DOI: 10.1016/S0140-6736(20)31189-2.

113. Li W., Cui H., Li K. et al. Chest computed tomography in children with COVID-19 respiratory infection. Pediatr. Radiol. 2020; 50 (6): 796–799. DOI: 10.1007/s00247-020-04656-7.

114. DeBiasi R.L., Song X., Delaney M. et al. Severe COVID19 in children and young adults in the Washington, DC Metropolitan Region. J. Pediatr. 2020; 223: 199–203.e1. DOI: 10.1016/j.jpeds.2020.05.007.

115. D’Antiga L. Coronavimses and immunosuppressed patients: The facts during the third epidemic. Liver Transpl. 2020; 26 (6): 832–834. DOI: 10.1002/lt.25756.

116. Shuang Liu, Yuxiang Zhi, Sun Ying. COVID-19 and asthma: Reflection during the pandemic. Clin. Rev. Allergy Immunol. 2020; 59 (1): 78–88. DOI: 10.1007/s12016-020-08797-3.

117. Gianfrancesco M., Hyrich K.L., Al-Adely S. et al. Characteristics associated with hospitalisation for COVID19 in people with rheumatic disease: data from the COVID19 Global Rheumatology Alliance physician-reported registry. Ann. Rheum. Dis. 2020; 79 (7): 859–866. DOI: 10.1136/annrheumdis-2020-217871.

118. Price E., MacPhie E., Kay L. et al. Identifying rheumatic disease patients at high risk and requiring shielding during the COVID-19 pandemic. Clin. Med. 2020; 20 (3): 290–291. DOI: 10.7861/clinmed.2020-0160.

119. Louapre C., Collongues N., Stankoff B. et al. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurol. 2020; 77 (9): 1079. DOI: 10.1001/jamaneurol.2020.2581.

120. Rasmussen S.A., Smulian J.C., Lednicky J.A. et al. Coronavirus disease 2019 (COVID-19) and pregnancy: What obstetricians need to know. Am. J. Obstet. Gynecol. 2020; 222 (5): 415–426. DOI: 10.1016/j.ajog.2020.02.017.

121. Parazzini F., Bortolus R., Mauri P.A. et al. Delivery in pregnant women infected with SARS-CoV-2: A fast review. Int. J. Gynaecol. Obstet. 2020; 150 (1): 41–46. DOI: 10.1002/ijgo.13166.

122. Yang Z., Liu Y. vertical transmission of severe acute respiratory syndrome coronavirus 2: A systematic review. Am. J. Perinatol. 2020; 37 (10): 1055–1060. DOI: 10.1055/s-00401712161.

123. Li Y., Zhao R., Zheng S. et al. Lack of vertical transmission of severe acute respiratory syndrome coronavirus 2, China. Emerg. Infect. Dis. 2020; 26 (6): 1335–1336. DOI: 10.3201/eid2606.200287.

124. Lu Q., Shi Y. Coronavirus disease (COVID-19) and neonate: What neonatologist need to know. J. Med. Virol. 2020; 92 (6): 564–567. DOI: 10.1002/jmv.25740.

125. Zhu H., Wang L., Fang C. et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl. Pediatr. 2020; 9 (1): 51–60. DOI: 10.21037/tp.2020.02.06.

126. Cui Y., Tian M., Huang D. et al. A 55-day-old female infant infected with COVID 19: Presenting with pneumonia, liver injury, and heart damage. J. Infect. Dis. 2020; 221 (11): 1775–1781. DOI: 10.1093/infdis/jiaa113.

127. COVID-19 Treatment Guidelines. Coronavirus disease 2019 (COVID-19) treatment guidelines. Available at: https://www.covid19treatmentguidelines.nih.gov [Accessed: June 29, 2020].

128. Boulware D.R., Pullen M.F., Bangdiwala A.S. et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19. N. Engl. J. Med. 2020; 383 (6): 517–525. DOI: 10.1056/NEJMoa2016638.

129. FitzGerald G.A. Misguided drug advice for COVID-19. Science. 2020; 367 (6485): 1434. DOI: 10.1126/science.abb8034.

130. Sheahan T.P., Sims A.C., Leist S.R. et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020; 11 (1): 222. DOI: 10.1038/s41467-019-13940-6.

131. Martinez M.A. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob. Agents Chemother. 2020; 64 (5): e00399-20. DOI: 10.1128/AAC.00399-20.

132. Сао В., Wang Y., Wen D. et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med. 2020; 382 (19): 1787–1799. DOI: 10.1056/NEJMoa2001282.

133. Grein J., Ohmagari N., Shin D. et al. Compassionate use of remdesivir for patients with severe COVID-19. N. Engl. J. Med. 2020; 382 (24): 2327–2336. DOI: 10.1056/NEJMoa2007016.

134. Gautret P., Lagier J., Parola P. et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents. 2020; 56 (1): 105949. DOI: 10.1016/j.ijantimicag.2020.105949.

135. Chang R., Sun W. Repositioning chloroquine as ideal antiviral prophylactic against COVID-19 – time is now. Preprints. [Preprint. Posted: 2020, Mar. 17]. DOI: 10.20944/preprints202003.0279.v1.

136. Advisory on the use of hydroxy-chloroquine as prophylaxis for SARS-CoV-2 infection. Scribd. Available at: https://ru.scribd.com/document/452876030/Advisory-on-the-Use-ofHydroxy-chloroquin-as-Prophylaxis-for-SARS-CoV-2-Infection-1

137. Velthuis A.J., van den Worm S.H., Sims A.C. et al. Zn2+ Inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010; 6 (11): e1001176. DOI: 10.1371/journal.ppat.1001176.

138. Santoli J.M., Lindley M.C., DeSilva M.B. et al. Effects of the COVID-19 pandemic on routine pediatric vaccine ordering and administration – United States, 2020. MMWR. Morb. Mortal. Weekly Rep. 2020; 69 (19): 591–593. DOI: 10.15585/mmwr.mm6919e2.

139. Gellin B. Why vaccine rumours stick – and getting them unstuck. Lancet. 2020; 396 (10247): 303–304. DOI: 10.1016/s0140-6736(20)31640-8.

140. Bramer C.A., Kimmins L.M., Swanson R. et al. Decline in child vaccination coverage during the COVID-19 pandemic – Michigan Care Improvement Registry, May 2016 May 2020. Am. J. Transplant. 2020; 20 (7): 1930–1931. DOI: 10.1111/ajt.16112.

141. Bousquet J., Anto J.M., Iaccarino G. et al. Is diet partly responsible for differences in COVID-19 death rates between and within countries? Clin. Transl. Allergy. 2020; 10 (1): 16. DOI: 10.1186/s13601-020-00323-0.

142. Parikh P.A., Shah B.V., Phatak A.G. et al. COVID-19 pandemic: Knowledge and perceptions of the public and healthcare professionals. Cureus. 2020; 12 (5): e8144. DOI: 10.7759/cureus.8144.


Review

For citations:


Namazova-Baranova L.S., Baranov A.A. COVID-19 and children. PULMONOLOGIYA. 2020;30(5):609-628. https://doi.org/10.18093/0869-0189-2020-30-5-609-628

Views: 4574


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)