Preview

Пульмонология

Расширенный поиск

Неинвазивная вентиляция легких при новой коронавирусной инфекции COVID-19

https://doi.org/10.18093/0869-0189-2020-30-5-679-687

Полный текст:

Аннотация

На начальных этапах пандемии COVID-19 во многих руководствах по ведению пациентов с новой коронавирусной инфекцией отсутствовали рекомендации по использованию неинвазивной вентиляции легких (НВЛ) из опасений, что последняя может сопровождаться высокими дыхательными объемами, способными вызвать повреждение легких. Кроме того, существовало мнение, что при НВЛ повышается риск распространения биоаэрозоля, содержащего вирус SARS-CoV-2. В то же время НВЛ достаточно широко используется в реальной клинической практике при ведении тяжелых пациентов с COVID-19 (в некоторых странах – до 60 % всех методов респираторной поддержки). Накопленный опыт показывает, что при работе с НВЛ риск контаминации вирусными инфекциями сводится к минимуму при адекватном использовании средств индивидуальной защиты. К настоящему времени доступны результаты небольшого числа исследований, посвященных эффективности НВЛ при гипоксемической острой дыхательной недостаточности у пациентов с COVID-19. По результатам большинства исследований показано, что потребность в интубации трахеи и госпитальная летальность в среднем составляют 20–30 %. Это позволяет сделать вывод о достаточно высокой эффективности НВЛ при острой дыхательной недостаточности у пациентов с COVID-19.

Об авторе

С. Н. Авдеев
Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет им. И.М.Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет); Федеральное государственное бюджетное учреждение «Научно-исследовательский институт пульмонологии» Федерального медико-биологического агентства
Россия

Авдеев Сергей Николаевич – д. м. н., профессор, член-корр. Российской академии наук, заведующий кафедрой пульмонологии федерального государственного автономного образовательного учреждения высшего образования «Первый Московский государственный медицинский университет им. И.М.Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет); руководитель клинического отдела федерального государственного бюджетного учреждения «Научно-исследовательский институт пульмонологии» Федерального медико-биологического агентства

119991, Москва, ул. Трубецкая, 8, стр. 2
115682, Москва, Ореховый бульвар, 28
тел.: (495) 708-35-76



Список литературы

1. Zhu N., Zhang D., Wang W. et al. A Novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020; 382 (8): 727–733. DOI: 10.1056/NEJMoa2001017.

2. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. DOI: 10.1016/S01406736(20)30183-5.

3. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA. 2020; 323 (17): 1239–1242. DOI: 10.1001/jama.2020.2648.

4. Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46 (6): 1294–1297. DOI: 10.1007/s00134-020-06028-z.

5. Bellani G., Laffey J.G., Pham T. et al. Noninvasive ventilation of patients with acute respiratory distress syndrome: Insights from the LUNG SAFE study. Am. J. Respir. Crit. Care Med. 2017; 195 (1): 67–77. DOI: 10.1164/rccm.2016061306OC.

6. Intensive Care National Audit & Research Centre (ICNARC). ICNARC report on COVID-19 in critical care, 10 April 2020. Available at: https://www.icnarc.org/OurAudit/Audits/Cmp/Reports

7. Richardson S., Hirsch J.S., Narasimhan M. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020; 323 (20): 2052. DOI: 10.1001/jama.2020.6775.

8. Hua J., Qian C., Luo Z. et al. Invasive mechanical ventilation in COVID-19 patient management: the experience with 469 patients in Wuhan. Crit. Care. 2020; 24 (1): 348. DOI: 10.1186/s13054-020-03044-9.

9. Rochwerg B., Brochard L., Elliott M.W. et al. Official ERS/ ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur. Respir. J. 2017; 50 (2): 1602426. DOI: 10.1183/13993003.02426-2016.

10. Авдеев С.Н. Неинвазивная вентиляция легких при острой дыхательной недостаточности: от клинических рекомендаций – к реальной клинической практике. Пульмонология. 2018; 28 (1): 32–35. DOI: 10.18093/08690189-2018-28-1-32-35.

11. Авдеев С.Н. Неинвазивная вентиляция легких при острой дыхательной недостаточности. Пульмонология. 2005; (6): 37–54.

12. Авдеев С.Н. Неинвазивная вентиляция легких у пациентов c хронической обструктивной болезнью легких в стационаре и домашних условиях. Пульмонология. 2017; 27 (2): 232–249. DOI: 10.18093/0869-0189-2017-272-232-249.

13. Faculty of Intensive Care Medicine, Intensive Care Society, Association of Anaesthetists and Royal College of Anaesthetists. Critical care preparation and management in the COVID-19 pandemic. Available at: https://www.icmanaesthesiacovid-19.org/critical-care-preparation-and-management-in-the-covid-19-pandemic (Accessed: Marсh 25, 2020).

14. World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020. Available at: https://apps.who.int/iris/handle/10665/331446?show=full

15. Alhazzani W., Muller M.H., Arabi Y.M. et al. Surviving sepsis campaign: Guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Crit. Care Med. 2020; 48 (6): e440–469. DOI: 10.1097/ccm.0000000000004363.

16. NHS. Guidance for the role and use of non-invasive respiratory support in adult patients with COVID-19 (confirmed or suspected). 6 April 2020, Version 3. Available at: https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/03/specialty-guide-NIV-respiratory-support-and-coronavirus-v3.pdf

17. Vitacca M., Nava S., Santus P. et al. Early consensus management for non-ICU ARF SARS-CoV-2 emergency in Italy: From ward to trenches. Eur. Respir. J. 2020; 55 (5): 2000632. DOI: 10.1183/13993003.00632-2020.

18. Troosters T. Managing the respiratory care of patients with COVID-19: Italian recommendations. European Respiratory Society; 2020, Mar. 23. Available at: https://www.ersnet.org/covid-19-blog/sharing-italian-recommendations

19. Cinesi Gómez C., Peñuelas Rodríguez Ó., Luján Torné M. et al. Recomendaciones de consenso respecto al soporte respiratorio no invasivo en el paciente adulto con insuficiencia respiratoria aguda secundaria a infección por SARSCoV-2. Arch. Bronconeumol. 2020; 56 (2): 11–18. DOI: 10.1016/j.arbres.2020.03.005.

20. Авдеев С.Н., Царева Н.А., Мержоева З.М. и др. Практические рекомендации по кислородотерапии и респираторной поддержке пациентов с COVID-19 на дореанимационном этапе. Пульмонология. 2020; 30 (2): 151–163. DOI: 10.18093/0869-0189-2020-30-2-151-163.

21. Crimi C., Noto A., Cortegiani A. et al. Noninvasive respiratory support in acute hypoxemic respiratory failure associated with COVID-19 and other viral infections. medRxiv [Preprint. Posted: 2020, May 26]. DOI: 10.1101/2020.05.24.20111013.

22. Attanasi M., Pasini S., Caronni A., Pellegrino G.M. et al. Inpatient care during the COVID-19 pandemic: A survey of Italian physicians. Respiration. 2020; 99 (8): 667–677. DOI: 10.1159/000509007.

23. Lai X., Wang M., Qin C. et al. Coronavirus disease 2019 (COVID-2019) infection among health careworkers and implications for prevention measures in a tertiary hospital in Wuhan, China. JAMA Netw. Open. 2020; 3 (5): e209666. DOI: 10.1001/jamanetworkopen.2020.9666.

24. Tran K., Cimon K., Severn M. et al. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: A systematic review. PLoS One. 2012; 7 (4): e35797. DOI: 10.1371/journal.pone.0035797.

25. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323 (13): 1239. DOI: 10.1001/jama.2020.2648.

26. Niederman M.S., Richeldi L., Chotirmall S.H., Bai C. Rising to the challenge of COVID-19: Advice for pulmonary and critical care and an agenda for research. Am. J. Respir. Crit. Care Med. 2020; 201 (9): 1019–1022. DOI: 10.1164/rccm.202003-0741ED.

27. Ferioli M., Cisternino C., Leo V. et al. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. Eur. Respir. Rev. 2020; 29 (155): 200068. DOI: 10.1183/16000617.0068-2020.

28. Remy K.E., Lin J.C., Verhoef P.A. High-flow nasal cannula may be no safer than non-invasive positive pressure ventilation for COVID-19 patients. Crit. Care. 2020; 24 (1): 169. DOI: 10.1186/s13054-020-02892-9.

29. Lyons C., Callaghan M. The use of high-flow nasal oxygen in COVID-19. Anaesthesia. 2020; 75 (7): 843–847. DOI: 10.1111/anae.15073.

30. Stetzenbach L.D., Buttner M.P., Cruz P. Detection and enumeration of airborne biocontaminants. Curr. Opin. Biotechnol. 2004; 15 (3): 170–174. DOI: 10.1016/j.copbio.2004.04.009.

31. Hui D.S., Chan M.T.V., Chow B. Aerosol dispersion during various respiratory therapies: a risk assessment model of nosocomial infection to health care workers. Hong Kong Med. J. 2014; 20 (Suppl. 4): 9–13.

32. Hui D.S., Chow B.K., Lo T. et al. Exhaled air dispersion during noninvasive ventilation via helmets and a total facemask. Chest. 2015; 147 (5): 1336–1343. DOI: 10.1378/chest.14-1934.

33. Hui D.S., Chow B.K., Lo T. et al. Exhaled air dispersion during high-flow nasal cannula therapy versus CPAP via different masks. Eur. Respir. J. 2019; 53 (4): 1802339. DOI: 10.1183/13993003.02339-2018.

34. Simonds A.K., Hanak A., Chatwin M. et al. Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections. Health Technol. Assess. 2010; 14 (46): 131–172. DOI: 10.3310/hta14460-02.

35. Raoof S., Nava S., Carpati C. et al. High flow, non-invasive ventilation and awake (non-intubation) proning in patients with COVID-19 with respiratory failure. Chest. [Preprint. Posted: 2020, Jul. 15]. DOI: 10.1016/j.chest.2020.07.013.

36. Oranger M., Gonzalez-Bermejo J., Dacosta-Noble P. et al. Continuous positive airway pressure to avoid intubation in SARS-CoV-2 pneumonia: a two-period retrospective case-control study. Eur. Respir. J. 2020; 56 (2): 2001692. DOI: 10.1183/13993003.01692-2020.

37. Wang T., Tang C., Chen R. et al. Clinical features of coronavirus disease 2019 patients with mechanical ventilation: A nationwide study in China. Crit. Care Med. 2020; 48 (9): e809–812. DOI: 10.1097/CCM.0000000000004473.

38. Schnell D., Timsit J.F., Darmon M. et al. Noninvasive mechanical ventilation in acute respiratory failure: trends in use and outcomes. Intensive Care Med. 2014; 40 (4): 582–591. DOI: 10.1007/s00134-014-3222-y.

39. Bellani G., Laffey J.G., Pham T. et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016; 315 (8): 788–800. DOI: 10.1001/jama.2016.0291.

40. L’Her E., Deye N., Lellouche F. et al. Physiologic effects of noninvasive ventilation during acute lung injury. Am. J. Respir. Crit. Care Med. 2005; 172 (9): 1112–1118. DOI: 10.1164/rccm.200402-226oc.

41. Morais C.C.A., Koyama Y., Yoshida T. et al. High positive end-expiratory pressure renders spontaneous effort non-injurious. Am. J. Respir. Crit. Care Med. 2018; 197 (10): 12851296. DOI: 10.1164/rccm.201706-1244OC.

42. Navalesi P., Maggiore S.M. Positive end-expiratory pressure. In: Tobin M.J., ed. Principles and practice of mechanical ventilation. 3 rd ed. New York: McGraw Hill Medical; 2013: 253–302.

43. Olivieri C., Costa R., Spinazzola G. et al. Bench comparative evaluation of a new generation and standard helmet for delivering non-invasive ventilation. Intensive Care Med. 2013; 39 (4): 734–738. DOI: 10.1007/s00134-012-2765-z.

44. Grieco D.L., Menga L.S., Raggi V. et al. Physiological comparison of high-flow nasal cannula and helmet noninvasive ventilation in acute hypoxemic respiratory failure. Am. J. Respir. Crit. Care Med. 2020; 201 (3): 303–312. DOI: 10.1164/rccm.201904-0841oc.

45. Cosentini R., Brambilla A.M., Aliberti S. et al. Helmet continuous positive airway pressure vs oxygen therapy to improve oxygenation in community-acquired pneumonia: A randomized, controlled trial. Chest. 2010; 138 (1): 114–120. DOI: 10.1378/chest.09-2290.

46. Brambilla A.M., Aliberti S., Prina E. et al. Helmet CPAP vs. oxygen therapy in severe hypoxemic respiratory failure due to pneumonia. Intensive Care Med. 2014; 40 (7): 942–949. DOI: 10.1007/s00134-014-3325-5.

47. Agarwal R., Aggarwal A.N., Gupta D. Role of noninvasive ventilation in acute lung injury/acute respiratory distress syndrome: a proportion meta-analysis. Respir. Care. 2010; 55 (12): 1653–1660.

48. Ferreyro B.L., Angriman F., Munshi L. et al. Association of noninvasive oxygenation strategies with all-cause mortality in adults with acute hypoxemic respiratory failure. A systematic review and meta-analysis. JAMA. 2020; 324 (1): 57. DOI:10.1001/jama.2020.9524.

49. Carteaux G., Millan-Guilarte T., De Prost N. et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: Role of tidal volume. Crit. Care Med. 2016; 44 (2): 282–290. DOI: 10.1097/CCM.0000000000001379.

50. Frat J.P., Ragot S., Coudroy R. et al. Predictors of intubation in patients with acute hypoxemic respiratory failure treated with a noninvasive oxygenation strategy. Crit. Care Med. 2018; 46 (2): 208–215. DOI: 10.1097/ccm.0000000000002818.

51. Tonelli R., Fantini R., Tabbì L. et al. Inspiratory effort assessment by esophageal manometry early predicts noninvasive ventilation outcome in de novo respiratory failure: A pilot study. Am. J. Respir. Crit. Care Med. 2020; 202 (4): 558–567. DOI: 10.1164/rccm.201912-2512OC.

52. Brochard L., Lefebvre J.C., Cordioli R.L. et al. Noninvasive ventilation for patients with hypoxemic acute respiratory failure. Semin. Respir. Crit. Care Med. 2014; 35 (4): 492–500. DOI: 10.1055/s-0034-1383863.

53. Antonelli M., Conti G., Moro M.L. et al. Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med. 2001; 27 (11): 1718–1728. DOI: 10.1007/s00134-001-1114-4.

54. Demoule A., Chevret S., Carlucci A. et al. Changing use of noninvasive ventilation in critically ill patients: trends over 15 years in francophone countries. Intensive Care Med. 2016; 42(1): 82–92. DOI: 10.1007/s00134-015-4087-4.

55. Duca A., Memaj I., Zanardi F. et al. Severity of respiratory failure and outcome of patients needing a ventilatory support in the emergency department during Italian novel coronavirus SARS-CoV-2 outbreak: Preliminary data on the role of helmet CPAP and non-invasive ventilation. EClinicalMedicine. 2020; 24: 100419. DOI: 10.1016/j.eclinm.2020.100419.

56. Pagano A., Porta G., Bosso G. et al. Non-invasive CPAP in mild and moderate ARDS secondary to SARS-CoV-2. Respir. Physiol. Neurobiol. 2020; 280: 103489. DOI: 10.1016/j.resp.2020.103489.

57. Nightingale R., Nwosu N., Kutubudin F. et al. Is continuous positive airway pressure (CPAP) a new standard of care for type 1 respiratory failure in COVID-19 patients? A retrospective observational study of a dedicated COVID-19 CPAP service. BMJ Open Resp. Res. 2020; 7 (1): e000639. DOI: 10.1136/bmjresp-2020-000639.

58. Burns G.P., Lane N.D., Tedd H.M. et al. Improved survival following ward-based non-invasive pressure support for severe hypoxia in a cohort of frail patients with COVID-19: retrospective analysis from a UK teaching hospital. BMJ Open Resp. Res. 2020; 7 (1): e000621. DOI: 10.1136/bmjresp-2020-000621.

59. Aliberti S., Radovanovic D., Billi F. et al. Helmet CPAP treatment in patients with COVID-19 pneumonia: a multicenter, cohort study. Eur. Respir. J. 2020: 2001935. [Preprint. Posted: 2020, Aug. 3]. DOI: 10.1183/13993003.01935-2020.

60. Franco C., Facciolongo N., Tonelli R. et al. Feasibility and clinical impact of out-of-ICU non-invasive respiratory support in patients with COVID-19 related pneumonia. Eur. Respir. J. 2020: 2002130. [Preprint. Posted: 2020, Jan.]. DOI: 10.1183/13993003.02130-2020.

61. Mukhtar A., Lotfy A., Hasanin A. et al. Outcome of non-invasive ventilation in COVID-19 critically ill patients: A retrospective observational study. Anaesth. Crit. Care Pain Med. [Preprint. Posted: 2020, Jul. 28]. DOI: 10.1016/j.accpm.2020.07.012.

62. McLaughlin K.M., Murray I.M., Thain G. et al. Wardbased noninvasive ventilation for hypercapnic exacerbations of COPD: a “real-life” perspective. QJM. 2010; 103 (7): 505–510. DOI: 10.1093/qjmed/hcq063.

63. Hess D.R., Pang J.M., Camargo C.A. Jr. A survey of the use of noninvasive ventilation in academic emergency departments in the United States. Respir. Care. 2009; 54 (10): 1306–1312.

64. COVID-19 Research. UCL-Ventura breathing aid (CPAP) Design and manufacturing package. Available at: https://covid19research.uclb.com/product/ucl-cpap

65. Antonelli M., Conti G., Pelosi P. et al. New treatment of acute hypoxemic respiratory failure: noninvasive pressure support ventilation delivered by helmet: a pilot controlled trial. Crit. Care Med. 2002; 30 (3): 602–608. DOI: 10.1097/00003246-200203000-00019.

66. Patel B.K., Wolfe K.S., Pohlman A.S. et al. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: A randomized clinical trial. JAMA. 2016; 315 (22): 2435–2441. DOI: 10.1001/jama.2016.6338.

67. Force A.D.T., Ranieri V.M., Rubenfeld G.D. et al. Acute respiratory distress syndrome: The Berlin definition. JAMA. 2012; 307 (23): 2526–2533. DOI: 10.1001/jama.2012.5669.

68. Wu C., Chen X., Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020; 180 (7): 934. DOI: 10.1001/jamainternmed.2020.0994.

69. ClinicalTrials.gov. HFNC and NIV for COVID-19 complicated by respiratory failure. Available at: https://clinicaltrials.gov/ct2/show/results/NCT04452708?view=results

70. Perkins G.D., Couper K., Connolly B. et al. RECOVERY respiratory support: Respiratory strategies for patients with suspected or proven COVID-19 respiratory failure; Continuous positive airway pressure, high-flow nasal oxygen, and standard care: A structured summary of a study protocol for a randomised controlled trial. Trials. 2020; 21 (1): 687. DOI: 10.1186/s13063-020-04617-3.


Рецензия

Для цитирования:


Авдеев С.Н. Неинвазивная вентиляция легких при новой коронавирусной инфекции COVID-19. Пульмонология. 2020;30(5):679-687. https://doi.org/10.18093/0869-0189-2020-30-5-679-687

For citation:


Avdeev S.N. Non-invasive ventilation in patients with novel coronavirus infection COVID-19. PULMONOLOGIYA. 2020;30(5):679-687. https://doi.org/10.18093/0869-0189-2020-30-5-679-687

Просмотров: 18523


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)