Preview

Пульмонология

Расширенный поиск

Коагулопатия при COVID-19

https://doi.org/10.18093/0869-0189-2020-30-5-645-657

Полный текст:

Аннотация

Нарушения гемостаза играют важную роль в патогенезе и клинических проявлениях COVID-19. Целью работы явилось подробное рассмотрение патогенеза, клинических проявлений, методов диагностики и лечения коронавирус-индуцированной коагулопатии (КИК). При дебюте COVID-19 выявляется гиперкоагуляция, а коагулопатия потребления, синдром диссеминированного внутрисосудистого свертывания (ДВС) регистрируются обычно на поздних стадиях заболевания. В патогенезе гиперкоагуляции при COVID-19 играют роль провоспалительные цитокины, гиперфибриногенемия, повышенное содержание в крови фактора Виллебранда, фактора VIII, нейтрофильных внеклеточных ловушек, активация тромбоцитов, выработка антифосфолипидных антител, микровезикулы. В лабораторных показателях выявляются повышенные плазменные концентрации D-димера, фибриногена, увеличение протромбинового времени и уменьшение количества тромбоцитов. Кумулятивная частота тромботических осложнений колеблется от 21 до 31 %. Факторами риска тромбозов являются пребывание в отделении интенсивной терапии, лейкоцитоз и высокая концентрация D-димера в плазме. Дифференциальный диагноз КИК следует проводить с ДВС-синдромом, сепсис-индуцированной коагулопатией, антифосфолипидным, гемофагоцитарным синдромами, тромботической микроангиопатией, гепарин-индуцированной тромоцитопенией. Возможно сочетание КИК с сепсисом, антифосфолипидным синдромом, гемофагоцитарным синдромом, тромботической микроангиопатией, гепарин-индуцированной тромбоцитопенией.

Основной терапией является лечение низкомолекулярными гепаринами. Приводятся рекомендации по лечению.

Об авторе

Г. М. Галстян
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации
Россия

Галстян Геннадий Мартинович – д. м. н., заведующий отделением реанимации и интенсивной терапии

125167, Москва, Новый Зыковский проезд, 4
тел.: (495) 612-48-59 



Список литературы

1. Uddin M., Mustafa F., Rizvi T.A. et al. SARS-CoV-2/ COVID-19: Viral genomics, epidemiology, vaccines, and therapeutic interventions. Viruses. 2020; 12 (5): 526. DOI: 10.3390/v12050526.

2. Ashour H.M., Elkhatib W.F., Rahman M. et al. Insights into the recent 2019 novel coronavirus SARS-CoV-2 in light of past human coronavirus outbreaks. Pathogens. 2020; 9 (3): 1–15. DOI: 10.3390/pathogens9030186.

3. Guglielmetti G., Quaglia M., Sainaghi P.P. et al. “War to the knife” against thromboinflammation to protect endothelial function of COVID-19 patients. Crit. Care. 2020; 24 (1): 1–4. DOI: 10.1186/s13054-020-03060-9.

4. Wu C., Chen X., Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020; 180 (7): 934. DOI: 10.1001/jamainternmed.2020.0994.

5. Zhao Y., Zhao Z., Wang Y. et al. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. bioRxiv. [Preprint. Posted: 2020, Apr. 9]. DOI: 10.1101/2020.01.26.919985.

6. Udugama B., Kadhiresan P., Kozlowski H.N. et al. Diagnosing COVID-19: The disease and tools for detection. ACS Nano. 2020; 14 (4): 3822–3835. DOI: 10.1021/acsnano.0c02624.

7. Marongiu F., Grandone E., Barcellona D. Pulmonary thrombosis in 2019-nCoV pneumonia? J. Tromb. Haemost. 2020; 18 (6): 1511–1513. DOI: 10.1111/jth.14818.

8. Iba T., Levy J.H., Connors J.M. et al. The unique characteristics of COVID-19 coagulopathy. Crit. Care. 2020; 24 (1): 360. DOI: 10.1186/s13054-020-03077-0.

9. Chang J.C. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb. J. 2019; 17 (1): 10. DOI: 10.1186/s12959-0190198-4.

10. Iba T., Miki T., Hashiguchi N. et al. Is the neutrophil a “prima donna” in the procoagulant process during sepsis? Crit. Care. 2014; 18 (4): 230. DOI: 10.1186/cc13983.

11. Yang S., Qi H., Kan K. et al. Neutrophil extracellular traps promote hypercoagulability in patients with sepsis. Shock. 2017; 47 (2): 132–139. DOI: 10.1097/SHK.0000000000000741.

12. Østerud B., Bjørklid E. The tissue factor pathway in disseminated intravascular coagulation. Semin. Thromb. Hemost. 2001; 27 (6): 605–617. DOI: 10.1055/s-2001-18866.

13. Галстян Г.М., Кречетова А.В., Васильев С. и др. Система фибринолиза при сепсисе у больных в состоянии миелотоксического агранулоцитоза. Анестезиология и реаниматология. 2012; 57 (2): 41–47.

14. Wada H., Thachil J., Di Nisio M. et al. Guidance for diagnosis and treatment of disseminated intravascular coagulation from harmonization of the recommendations from three guidelines. J. Thromb. Haemost. 2013; 11 (4): 761–767. DOI: 10.1111/jth.12155.

15. Iba T., Di Nisio M., Levy J.H. et al. New criteria for sepsisinduced coagulopathy (SIC) following the revised sepsis definition: A retrospective analysis of a nationwide survey. BMJ Open. 2017; 7 (9): e017046. DOI: 10.1136/bmjopen2017-017046.

16. Takeda M., Moroi R., Harada T. et al. Relationship between protein C and antithrombin III deficiencies in sepsis without disseminated intravascular coagulation status. Ctit. Care. 2008; 12 (Suppl. 5): P40. DOI: 10.1186/cc7073.

17. Spiezia L., Boscolo A., Poletto F. et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb. Haemost. 2020; 120 (6): 998–1000. DOI: 10.1055/s-0040-1710018.

18. Panigada M., Bottino N., Tagliabue P. et al. Hypercoagulability of COVID-19 patients in intensive care unit. A report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost. 2020; 18 (7): 1738–1742. DOI: 10.1111/jth.14850.

19. Yang M., Ng M.H.L., Li C.K. et al. Thrombopoietin levels increased in patients with severe acute respiratory syndrome. Thromb. Res. 2008; 122 (4): 473–477. DOI: 10.1016/j.thromres.2007.12.021.

20. Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395 (10234): 1417–1418. DOI: 10.1016/S0140-6736(20)30937-5.

21. Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020; 5 (11): e138999. DOI: 10.1172/jci.insight.138999.

22. Gould T.J., Vu T.T., Swystun L.L. et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arter. Thromb. Vasc. Biol. 2014; 34 (9): 1977–1984. DOI: 10.1161/ATVBAHA.114.304114.

23. Zuo Y., Zuo M., Yalavarthi S. et al. Neutrophil extracellular traps and thrombosis in COVID-19. medRxiv. [Preprint. Posted: 2020, May 29]. DOI: 10.1101/2020.04.30.20086736.

24. Zhang Y., Xiao M., Shulan Zhang S. et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N. Engl. J. Med. 2020; 38 (1): 1–3. DOI: 10.1056/nejmc2007575.

25. Harzallah I., Debliquis A., Drénou B. Lupus anticoagulant is frequent in patients with Covid-19. J. Thromb. Haemost. 2020; 18 (8): 2064–2065. DOI: 10.1111/JTH.14867.

26. Helms J., Tacquard C., Severac F. et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020; 46 (6): 1089–1098. DOI: 10.1007/s00134-020-06062-x.

27. Guan W.J., Ni Z.Y., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; 382 (18): 1708–1720. DOI: 10.1056/NEJMoa2002032.

28. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. DOI: 10.1016/S01406736(20)30183-5.

29. Tang N., Li D., Wang X. et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020; 18 (4): 844–847. DOI: 10.1111/jth.14768.

30. Lodigiani C., Iapichino G., Carenzo L. et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb. Res. 2020; 191: 9–14. DOI: 10.1016/j.thromres.2020.04.024.

31. Zhang L., Yan X., Fan Q. et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J. Thromb. Haemost. 2020; 18 (6): 1324–1329. DOI: 10.1111/jth.14859.

32. Yin S., Huang M., Li D., Tang N. Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2. J. Thromb. Thrombolysis. [Preprint. Posted: 2020, Apr. 3]. DOI: 10.1007/s11239-020-02105-8.

33. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. DOI: 10.1016/S01406736(20)30183-5.

34. Ranucci M., Ballotta A., Di Dedda U. et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J. Thromb. Haemost. 2020; 18 (7): 17471751. DOI: 10.1111/jth.14854.

35. Lippi G., Plebani M., Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin. Chim. Acta. 2020; 506: 145–148. DOI: 10.1016/j.cca.2020.03.022.

36. Министерство здравоохранения Российской Федерации. Временные методические рекомендации: Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 7 (03.06.2020). Доступно на: https://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/original/03062020_%D0%9CR_COVID19_v7.pdf

37. Thachil J., Tang N., Gando S. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020; 18 (5): 1023–1026. DOI: 10.1111/jth.14810.

38. Jing-Chun S., Gang W., Wei Z. et al. Chinese expert consensus for diagnosis and treatment of coagulation dysfunction in COVID-19. Mil. Med. Res. 2020; 7 (1): 335–344. DOI: 10.1186/s40779-020-00247-7.

39. Fraissé M., Logre E., Pajot O. et al. Thrombotic and hemorrhagic events in critically ill COVID-19 patients: A French monocenter retrospective study. Crit. Care. 2020; 24 (1): 1–4. DOI: 10.1186/s13054-020-03025-y.

40. Paranjpe I., Fuster V., Lala A. et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J. Am. Coll. Cardiol. 2020; 76 (1): 122–124. DOI: 10.1016/j.jacc.2020.05.001.

41. Klok F.A., Kruip M.J.H.A., van der Meer N.J.M. et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb. Res. 2020; 191: 148–150. DOI: 10.1016/j.thromres.2020.04.041.

42. Leonard-Lorant I., Delabranche X., Severac F. et al. Acute pulmonary embolism in COVID-19 patients on CT angiography and relationship to D-Dimer levels. Radiology. 2020; 296 (3): e189–191. DOI: 10.1148/radiol.2020201561.

43. Tavazzi G., Civardi L., Caneva L. et al. Thrombotic events in SARS-CoV-2 patients: an urgent call for ultrasound screening. Intensive Care Med. 2020; 46 (6): 1121–1123. DOI: 10.1007/s00134-020-06040-3.

44. Middeldorp S., Coppens M., van Haaps T.F. et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost. 2020; 18 (8): 1995–2002. DOI: 10.1111/jth.14888.

45. Oudkerk M., Büller H.R., Kuijpers D. et al. Diagnosis, prevention, and treatment of thromboembolic complications in COVID-19: Report of the National Institute for Public Health of the Netherlands. Radiology. 2020; 297 (1): e216–222. DOI: 10.1148/radiol.2020201629.

46. Wichmann D., Sperhake J.P., Lütgehetmann M. et al. Autopsy findings and venous thromboembolism in patients with COVID-19. Ann. Intern. Med. 2020; 173 (4): 268–277. DOI: 10.7326/m20-2003.

47. Ramachandra S., Zaid F., Aggarwal A. et al. Recent advances in diagnostic and therapeutic guidelines for primary and secondary hemophagocytic lymphohistiocytosis. Blood Cells Mol. Dis. 2017; 64: 53–57. DOI: 10.1016/j.bcmd.2016.10.023.

48. Mehta P., McAuley D.F., Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395 (10229): 1033–1034. DOI: 10.1016/S0140-6736(20)30628-0.

49. Loscocco G.G. Secondary hemophagocytic lymphohistiocytosis, HScore and COVID-19. Int. J. Hematol. 2020; 112 (1): 125–126. DOI: 10.1007/s12185-020-02895-w.

50. Azoulay E., Knoebl P., Garnacho-Montero J. et al. Expert statements on the standard of care in critically Ill adult patients with atypical hemolytic uremic syndrome. Chest. 2017; 152 (2): 424–434. DOI: 10.1016/j.chest.2017.03.055.

51. Козловская Н.Л., Галстян Г.М., Степанюк В.Н. Сложные вопросы диагностики атипичного гемолитико-уремического синдрома в отделении реанимации и интенсивной терапии. Вестник анестезиологии и реаниматологии. 2019; 16 (4): 65–76. DOI: 10.21292/2078-5658-201916-4-65-76.

52. Sadler J.E. Pathophysiology of thrombotic thrombocytopenic purpura. Blood. 2017; 130 (10): 1181–1188. DOI: 10.1182/blood-2017-04-636431.

53. Magro C., Mulvey J.J., Berlin D. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl. Res. 2020; 220: 1–13. DOI: 10.1016/j.trsl.2020.04.007.

54. Gavriilaki E., Brodsky R.A. Severe COVID-19 infection and thrombotic microangiopathy: success does not come easily. Br. J. Haematol. 2020; 189 (6): e227–230. DOI: 10.1111/bjh.16783.

55. Selleng K., Warkentin T.E., Greinacher A. Heparin-induced thrombocytopenia in intensive care patients. Crit. Care Med. 2007; 35 (4): 1165–1176. DOI: 10.1097/01.CCM.0000259538.02375.A5.

56. Al-Eidan F. Is the incidence trend of heparin-induced thrombocytopenia decreased by the increased use of low-molecular-weight-heparin? Mediterr. J. Hematol. Infect. Dis. 2015; 7 (1): e2015029. DOI: 10.4084/MJHID.2015.029.

57. Patell R., Khan A., Bogue T. et al. Heparin induced thrombocytopenia antibodies in COVID-19. Am. J. Hematol. 2020; 95 (10): e295–296. DOI: 10.1002/ajh.25935.

58. Thachil J. The versatile heparin in COVID-19. J. Thromb. Haemost. 2020; 18 (5): 1020–1022. DOI: 10.1111/jth.14821.

59. Vicenzi E., Canducci F., Pinna D. et al. Coronaviridae and SARS-associated coronavirus strain HSR1. Emerg. Infect. Dis. 2004; 10 (3): 413–418. DOI: 10.3201/eid1003.030683.

60. Mycroft-West C., Su D., Elli S. The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 receptor binding domain undergoes conformational change upon heparin binding. bioRxiv. [Preprint. Posted: 2020, Mar. 2]. DOI: 10.1101/2020.02.29.971093.

61. Casini A., Alberio L., Angelillo-Scherrer A. et al. Thromboprophylaxis and laboratory monitoring for in-hospital patients with COVID-19 – a Swiss consensus statement by the Working Party Hemostasis. Swiss Med. Wkly. 2020; 150: w20247. DOI: 10.4414/smw.2020.20247.

62. Tang N., Bai H., Chen X., et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020; 18 (5): 1094–1099. DOI: 10.1111/jth.14817.

63. Ayerbe L., Risco C., Ayis S. The association between treatment with heparin and survival in patients with COVID-19. J. Thromb. Thrombolysis. 2020; 50 (2): 298–301. DOI: 10.1007/s11239-020-02162-z.

64. New COVID-19 HOPE clinical trial recommendations introduced today may reduce or eliminate mechanical ventilation for coronavirus patients. BioSpace. Available at: https://www.biospace.com/article/releases/new-covid-19-hope-clinical-trial-recommendations-introduced-today-may-reduce-or-eliminate-mechanical-ventilation-for-coronavirus-patients/?keywords=new+covid+19+hope+clinical+trial+recommendations+introduced+today+may+reduce+or+eliminate+mechanical+ventilation+for+coronavirus+patients

65. Wang J., Hajizadeh N., Moore E.E. et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J. Thromb. Haemost. 2020; 18 (7): 1752–1755. DOI: 10.1111/jth.14828.

66. Benamu E., Montoya J.G. Infections associated with the use of eculizumab: Recommendations for prevention and prophylaxis. Curr. Opini. Infect. Dis. 2016; 29 (4): 319–329. DOI: 10.1097/QCO.0000000000000279.


Для цитирования:


Галстян Г.М. Коагулопатия при COVID-19. Пульмонология. 2020;30(5):645-657. https://doi.org/10.18093/0869-0189-2020-30-5-645-657

For citation:


Galstyan G.M. Coagulopathy in COVID-19. PULMONOLOGIYA. 2020;30(5):645-657. https://doi.org/10.18093/0869-0189-2020-30-5-645-657

Просмотров: 8195


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)