A role оf gene polymorphism for susceptibility to pulmonary sarcoidosis
https://doi.org/10.18093/0869-0189-2019-29-5-596-603
Abstract
Authors of this review described gene polymorphism involved in the development of the immune response in sarcoidosis. Gene background could determine not only the subject’s susceptibility to sarcoidosis, but also a clinical course of the disease. Currently, allele variants that could be used as prognostic markers to reveal subjects susceptible to sarcoidosis and to predict a clinical course of sarcoidosis are investigated. Published data on a relationship between the carriage of certain allele variants and the subject’s susceptibility to sarcoidosis are scarce and controversial. Nevertheless, those data could be used to detect potential goals for targeted therapy of sarcoidosis and to develop measures to prevent this disease.
About the Authors
I. E. MalyshevaRussian Federation
Irina E. Malysheva - Candidate of Biology, Senior Researcher, Laboratory of Genetics, Institute of Biology, Karelian Federal Research Center, Russian Academy of Science.
ul. Pushkinskaya 11, Petrozavodsk, 185910.
tel.: (8142) 57-18-79L. V. Topchiyeva
Russian Federation
Lyudmila V. Topchiyeva - Candidate of Biology, the Leading Researcher, Laboratory of Genetics, Institute of Biology, Karelian Federal Research Center, Russian Academy of Science.
ul. Pushkinskaya 11, Petrozavodsk, 185910.
tel.: (8142) 57-18-79E. L. Tikhonovich
Russian Federation
Ella L. Tikhonovich - Head of Department of Respiratory Therapy, V.A.Baranov Republic Hospital of Kareliya Republic.
ul. Pirogova 3, Petrozavodsk, 185019.
tel.: (8142) 76-39-10References
1. Vizel' A.A., ed. [Sarcoidosis]. Moscow: Atmosfera, 2010 (in Russian).
2. Bianchi M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 2007; 81 (1): 1–5. DOI: 10.1189/jlb.0306164.
3. Mortaz E., Adcock I.M., Abedini A. et al. The role of pattern recognition receptors in lung sarcoidosis. Eur. J. Pharmacol. 2017; 808: 44–48. DOI: 10.1016/j.ejphar.2017.01.020.
4. Kubarenko A.V., Ranjan S., Rautanen A. et al. A naturally occurring variant in human TLR9, P99L, is associated with loss of CpG oligonucleotide responsiveness. J. Biol. Chem. 2010; 285: 36486–36494. DOI: 10.1074/jbc.M110.117200.
5. Somoskövi A., Zissel G., Seitzer U. et al. Polymorphisms at position -308 in the promoter region of the TNF-alpha and in the first intron of the TNF-beta genes and spontaneous and lipopolysaccharide-induced TNF alpha release in sarcoidosis. Cytokine. 1999; 11 (11): 882–887. DOI: 10.1006/cyto.1999.0498.
6. Veltkamp M., Wijnen P.A., van Moorsel C.H. et al. Linkage between Toll-like receptor (TLR) 2 promotor and intron polymorphisms: functional effects and relevance to sarcoidosis. Clin. Exp. Immunol 2007; 149 (3): 453–462. DOI: 10.1111/j.1365-2249.2007.03428.x.
7. Pabst S., Bradler O., Gillissen A. et al. Toll-like receptor-9 polymorphisms in sarcoidosis and chronic obstructive pulmonary disease. Adv. Exp. Med. Biol. 2013; 756: 239–45. DOI: 10.1007/978-94-007-4549-0_30.
8. Wiken M., Grunewald J., Eklund A., Wahlström J. Higher monocyte expression of TLR2 and TLR4, and enhanced pro-inf lammatory synergy of TLR2 with NOD2 stimulation in sarcoidosis. J. Clin. Immunol. 2009; 29 (1): 78–89. DOI: 10.1007/s10875-008-9225-0.
9. East L., Isacke C.M: The mannose receptor family. Biochim. Biophys. Acta. 2002; 1572 (2-3): 364–386. DOI: 10.1016/s0304-4165(02)00319-7.
10. Hattori T., Konno S., Takahashi A. et al. Genetic variants in mannose receptor gene (MRC1) confer susceptibility to increased risk of sarcoidosis. BMC Med. Genet. 2010; 11: 151. DOI: 10.1186/1471-2350-11-151.
11. Girardin S.E., Boneca I.G., Viala J. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 2003; 278: 8869–8872. DOI: 10.1074/jbc.C200651200.
12. Manon F., Favier A., Núñez G. et al. Solution structure of NOD1 CARD and mutational analysis of its interaction with the CARD of downstream kinase RICK. J. Mol. Biol. 2007; 365 (1): 160–174. DOI: 10.1016/j.jmb.2006.09.067.
13. Strober W., Murray P.J., Kitani A., Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat. Rev. Immunol. 2006; 6 (1): 9–20. DOI: 10.1038/nri1747.
14. Ogura Y., Inohara N., Benito A. et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J. Biol. Chem. 2001; 76 (7): 4812–4818. DOI: 10.1074/jbc.M008072200.
15. Economou M., Trikalinos T., Loizou K. et al. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis. Am. J. Gastroenterol. 2004; 99 (12): 2393–2404.
16. Rosenstiel P., Fantini M., Bräutigam K. et al. TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology. 2003; 124 (4): 1001–1009. DOI: 10.1053/gast.2003.50157.
17. Tanabe T., Chamaillard M., Ogura Y. et al. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J. 2004; 23 (7): 1587–1597. DOI: 10.1038/sj.emboj.7600175.
18. Kanazawa N., Okafuji I., Kambe N. et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood. 2005; 105 (3): 1195–1197.
19. Hedl M., Li J., Cho J.H., Abraham С. Chronic stimulation of Nod2 mediates tolerance to bacterial products. Proc. Natl Acad. Sci. USA. 2007; 10 4 (49): 19440–19445. DOI: 10.1073/pnas.0706097104.
20. Buhner S., Buning С., Genschel J. et al. Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut. 2006; 55 (3): 342–347. DOI: 10.1136/gut.2005.065557.
21. Loo Y.M., Gale M. Immune signaling by RIG-I-like receptors. Immunity. 2011; 34 (5): 680–692. DOI: 10.1016/j.immuni.2011.05.003.
22. Satoh T., Kato H., Kumagai Y. et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc. Natl Acad. Sci. USA. 2010; 107 (4): 1512–1517. DOI: 10.1073/pnas.0912986107.
23. Wagner K.D., Wagner N. Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol. Ther. 2010; 125 (3): 423–435. DOI: 10.1016/j.pharmthera.2009.12.001.
24. Maciejewska-Karłowska A. Polymorphic variants of the PPAR (Peroxisome Proliferator-Activated Receptor) genes: relevance for athletic performance. Trends Sport Sci. 2013; 1 (20): 5–15.
25. Culver D.A., Barna B.P., Raychaudhuri B. et al. Peroxisome proliferator-activated receptor gamma activity is deficient in alveolar macrophages in pulmonary sarcoidosis. Am. J. Respir. Cell Mol. Biol. 2004; 30 (1): 1–5. DOI: 10.1165/rcmb.2003-0304RC.
26. Huizar I., Malur A., Patel J. et al. The role of PPAR-gamma in carbon nanotube-elicited granulomatous lung inf lammation. Respir. Res. 2013; 14: 7. DOI: 10.1186/1465-9921-14-7.
27. Maver A., Medica I., Salobir B. et al. Peroxisome proliferator-activated receptor gamma/Pro12Ala polymorphism and peroxisome proliferator-activated receptor gamma coactivator-1 alpha/Gly482Ser polymorphism in patients with sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. 2008; 25 (1): 29–35.
28. Ikeda T., Hayashi S., Kamikawaji N. et al. Adverse effect of chronic tonsillitis on clinical course of sarcoidosis in relation to HLA distribution. Chest. 1992; 101 (3): 758–762. DOI: 10.1378/chest.101.3.758.
29. Rybicki B.A., Maliarik M.J. Poisson L.M., et al. The major histocompatibility complex gene region and sarcoidosis susceptibility in African Americans. Am. J. Respir. Crit. Care Med. 2003; 167 (3): 444–449. DOI: 10.1164/rccm.2112060.
30. Wolin A., Lahtela E.L., Anttila V. et al. SNP Variants in major histocompatibility complex are associated with sarcoidosis susceptibility – a joint analysis in four European populations. Front. Immunol. 2017; 8: 422. DOI: 10.3389/fimmu.2017.00422.
31. Grunewald J., Brynedal B., Darlington P. et al. Different HLA-DRB1 allele distributions in distinct clinical subgroups of sarcoidosis patients. Respir. Res. 2010; 11: 25. DOI: 10.1186/1465-9921-11-25.
32. Hänsch H.C., Smith D.A., Mielke M.E. et al. Mechanisms of granuloma formation in murine Mycobacterium avium infection: the contribution of CD4+ T cells. Int. Immunol. 1996; 8 (8): 1299–1310. DOI: 10.1093/intimm/8.8.1299.
33. Sallusto F., Lanzavecchia A. Heterogeneity of CD41+ memory T cells: functional modules for tailored immunity. Eur. J. Immunol. 2009; 39 (8): 2076–2082. DOI: 10.1002/eji.200939722.
34. Tao J.H., Cheng M., Tang J.P. et al. Foxp3, Regulatory T-cell, and autoimmune diseases. Inf lammation. 2017; 40 (1): 328–339. DOI: 10.1007/s10753-016-0470-8.
35. Lee M., Bae S., Lee Y. Association between FOXP3 polymorphisms and susceptibility to autoimmune diseases: a meta-analysis. Autoimmunity. 2015; 48 (7): 445–452. DOI: 10.3109/08916934.2015.1045582.
36. Takano Y., Niimi T. Sato S. et al. Effects of FOXP3 gene polymorphism in sarcoidosis patients. Sarcoidosis Vasc. Diffuse Lung Dis. 2007; 24 (2): 102–105.
37. Malysheva I.E., Topchieva L.V., Tikhonovich E.L. et al. [Association of FOXP3 gene –3279C>A polymorphism with the risk of pulmonary sarcoidosis]. Terapevticheskiy arkhiv. 2017; 89 (12): 64–67. DOI: 10.17116/terarkh2017891264-67 (in Russian).
38. Wikén M., Grunewald J., Eklund A., Wahlström J. Multiparameter phenotyping of T-cell subsets in distinct subgroups of patients with pulmonary sarcoidosis. J. Intern. Med. 2012; 271 (1): 90–103. DOI: 10.1111/j.1365-2796.2011.02414.x.
39. Nguyen T., Liu X.K., Zhang Y., Dong C. BTNL2, a butyrophilin-like molecule that functions to inhibit T-cell activation. J. Immunol. 2006; 176 (12): 7354–7360. DOI: 10.4049/jimmunol.176.12.7354.
40. Zissel G., Ernst M., Schlaak M., Müller-Quernheim J. Accessory function of alveolar macrophages from patients with sarcoidosis and other granulomatous and nongranulomatous lung diseases. J. Investig Med. 1997; 45 (2): 75–86.
41. Rybicki B.A., Walewski J.L., Maliarik M.J. et al. The BTNL2 gene and sarcoidosis susceptibility in African Americans and Whites. Am. J. Hum. Genet. 2005; 77 (3): 491–499. DOI: 10.1086/444435.
42. Krein P.M., Winston B.W. Roles for insulin-like growth factor I and transforming growth factor-beta in fibrotic lung disease. Chest. 2002; 122 (6, Suppl.): 289S–293S. DOI: 10.1378/chest.122.6_suppl.289s.
43. Prud’homme G.J. Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab. Invest. 2007; 87 (11): 1077–1091.
44. Muraközy G., Gaede K.I., Zissel G. et al. Analysis of gene polymorphisms in interleukin-10 and transforming growер factor-beta 1 in sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. 2001; 18 (2): 165–169.
45. Gaede K.I., Amicosante M., Schürmann M. et al. Function associated transforming growth factor-beta gene polymorphism in chronic beryllium disease. J. Mol. Med. (Berlin). 2005; 83 (5): 397–405. DOI: 10.1007/s00109-004-0626-0.
46. Kruit A., Grutters J.C., Ruven H.J. et al. Transforming growth factor-beta gene polymorphisms in sarcoidosis patients with and without fibrosis. Chest. 2006; 129 (6): 1584–1591. DOI: 10.1378/chest.129.6.1584.
47. Smith N.L., Denning D.V. Clinical implications of interferon-gamma genetic and epigenetic variants. Immunology. 2014; 143 (4): 499–511. DOI: 10.1111/imm.12362.
48. Saltini C., Spurzem J.R., Lee J.J. et al. Spontaneous release of interleukin 2 by lung T lymphocytes in active pulmonary sarcoidosis is primarily from the Leu3+DR+ T cell subset. J. Clin. Invest. 1986; 77 (6): 1962–1970. DOI: 10.1172/JCI112525.
49. Broos C.E., van Nimwegen M., Hoogsteden H.C. et al. Granuloma formation in pulmonary sarcoidosis. Front. Immunol. 2013; 4: 437. DOI: 10.3389/fimmu.2013.00437.
50. Gudmundsson G., Hunninghake G.W. Interferon-gamma is necessary for the expression of hypersensitivity pneumonitis. J. Clin. Invest. 1997; 99 (10): 2386–2390. DOI: 10.1172/JCI119420.
51. Moller D.R., Forman J.D., Liu M.C. et al. Enhanced expression of IL-12 associated with Th1 cytokine profiles in active pulmonary sarcoidosis. J. Immunol. 1996; 156 (12): 4952–4960.
52. Bream J.H., Ping A., Zhang X. et. al. A single nucleotide polymorphism in the proximal IFN-gamma promoter alters control of gene transcription. Genes Immun. 2002; 3: 165–169. DOI: 10.1038/sj.gene.6363870.
53. Pravica V., Perrey C., Stevens A. et al. A single nucleotide polymorphism in the first intron of the human INF-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high INF-gamma production. Hum. Immunol. 2000; 61 (9): 863–866. DOI: 10.1016/S0198-8859(00)00167-1.
54. Wysoczanska B., Bogunia-Kubik K., Lange A. INF-gamma and HLA polymorphisms in sarcoidosis. Gen. Immun. 2003; 4: S44.
55. Kieszko R., Krawczyk P., Chocholska S. et al. TNF-alpha and TNF-beta gene polymorphisms in Polish patients with sarcoidosis. Connection with susceptibility and prognosis. Sarcoidosis Vasc. Diffuse Lung Dis. 2010; 27 (2): 131–137.
56. Feng Y., Zhou J., Gu C. et al. Association of six well-characterized polymorphisms in TNF-α and TNF-β genes with sarcoidosis: a meta-analysis. PLoS One. 2013; 8 (11): e80150. DOI: 10.1371/journal.pone.0080150.
57. Mrazek F., Holla L.I., Hutyrova B. et al. Association of tumour necrosis factor-alpha, lymphotoxin-alpha and HLA-DRB1 gene polymorphisms with Löfgren's syndrome in Czech patients with sarcoidosis. Tissue Antigens. 2005; 65 (2): 163–171. DOI: 10.1111/j.1399-0039.2005.00370.x.
58. Xie H.J., Wu M., Niu Y. et al. Associations between tumor necrosis factor alpha gene polymorphism and sarcoidosis: a meta-analysis. Mol. Biol. Rep. 2014; 41 (7): 4475-4480. DOI: 10.1007/s11033-014-3318-z.
Review
For citations:
Malysheva I.E., Topchiyeva L.V., Tikhonovich E.L. A role оf gene polymorphism for susceptibility to pulmonary sarcoidosis. PULMONOLOGIYA. 2019;29(5):596-603. (In Russ.) https://doi.org/10.18093/0869-0189-2019-29-5-596-603