Роль полиморфизма генов в чувствительности к саркоидозу легких
https://doi.org/10.18093/0869-0189-2019-29-5-596-603
Аннотация
В обзоре обобщены сведения о роли полиморфных вариантов генов в формировании иммунного ответа при саркоидозе. Обозначены основные гены-кандидаты, однонуклеотидные замены, которые могут оказывать модулирующее действие на развитие иммунных реакций при данной патологии, а также определять не только восприимчивость людей к возникновению саркоидоза легких, но и оказывать влияние на клинические характеристики течения заболевания.
Об авторах
И. Е. МалышеваРоссия
Малышева Ирина Евгеньевна – кандидат биологических наук, старший научный сотрудник лаборатории генетики.
185910, Петрозаводск, ул. Пушкинская, 11.
тел.: (8142) 57-18-79
Л. В. Топчиева
Россия
Топчиева Людмила Владимировна – кандидат биологических наук, ведущий научный сотрудник лаборатории генетики.
185910, Петрозаводск, ул. Пушкинская, 11.
тел.: (8142)57-18-79
Э. Л. Тихонович
Россия
Тихонович Элла Леонидовна – заведующая отделением респираторной терапии.
185019, Петрозаводск, ул. Пирогова, 3.
тел.: (8142) 76-39-10
Список литературы
1. Визель А.А., ред. Саркоидоз. М.: Атмосфера, 2010.
2. Bianchi M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 2007; 81 (1): 1–5. DOI: 10.1189/jlb.0306164.
3. Mortaz E., Adcock I.M., Abedini A. et al. The role of pattern recognition receptors in lung sarcoidosis. Eur. J. Pharmacol. 2017; 808: 44–48. DOI: 10.1016/j.ejphar.2017.01.020.
4. Kubarenko A.V., Ranjan S., Rautanen A. et al. A naturally occurring variant in human TLR9, P99L, is associated with loss of CpG oligonucleotide responsiveness. J. Biol. Chem. 2010; 285: 36486–36494. DOI: 10.1074/jbc.M110.117200.
5. Somoskövi A., Zissel G., Seitzer U. et al. Polymorphisms at position -308 in the promoter region of the TNF-alpha and in the first intron of the TNF-beta genes and spontaneous and lipopolysaccharide-induced TNF alpha release in sarcoidosis. Cytokine. 1999; 11 (11): 882–887. DOI: 10.1006/cyto.1999.0498.
6. Veltkamp M., Wijnen P.A., van Moorsel C.H. et al. Linkage between Toll-like receptor (TLR) 2 promotor and intron polymorphisms: functional effects and relevance to sarcoidosis. Clin. Exp. Immunol 2007; 149 (3): 453–462. DOI: 10.1111/j.1365-2249.2007.03428.x.
7. Pabst S., Bradler O., Gillissen A. et al. Toll-like receptor-9 polymorphisms in sarcoidosis and chronic obstructive pulmonary disease. Adv. Exp. Med. Biol. 2013; 756: 239–45. DOI: 10.1007/978-94-007-4549-0_30.
8. Wiken M., Grunewald J., Eklund A., Wahlström J. Higher monocyte expression of TLR2 and TLR4, and enhanced pro-inf lammatory synergy of TLR2 with NOD2 stimulation in sarcoidosis. J. Clin. Immunol. 2009; 29 (1): 78–89. DOI: 10.1007/s10875-008-9225-0.
9. East L., Isacke C.M: The mannose receptor family. Biochim. Biophys. Acta. 2002; 1572 (2-3): 364–386. DOI: 10.1016/s0304-4165(02)00319-7.
10. Hattori T., Konno S., Takahashi A. et al. Genetic variants in mannose receptor gene (MRC1) confer susceptibility to increased risk of sarcoidosis. BMC Med. Genet. 2010; 11: 151. DOI: 10.1186/1471-2350-11-151.
11. Girardin S.E., Boneca I.G., Viala J. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 2003; 278: 8869–8872. DOI: 10.1074/jbc.C200651200.
12. Manon F., Favier A., Núñez G. et al. Solution structure of NOD1 CARD and mutational analysis of its interaction with the CARD of downstream kinase RICK. J. Mol. Biol. 2007; 365 (1): 160–174. DOI: 10.1016/j.jmb.2006.09.067.
13. Strober W., Murray P.J., Kitani A., Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat. Rev. Immunol. 2006; 6 (1): 9–20. DOI: 10.1038/nri1747.
14. Ogura Y., Inohara N., Benito A. et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J. Biol. Chem. 2001; 76 (7): 4812–4818. DOI: 10.1074/jbc.M008072200.
15. Economou M., Trikalinos T., Loizou K. et al. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis. Am. J. Gastroenterol. 2004; 99 (12): 2393–2404.
16. Rosenstiel P., Fantini M., Bräutigam K. et al. TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology. 2003; 124 (4): 1001–1009. DOI: 10.1053/gast.2003.50157.
17. Tanabe T., Chamaillard M., Ogura Y. et al. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J. 2004; 23 (7): 1587–1597. DOI: 10.1038/sj.emboj.7600175.
18. Kanazawa N., Okafuji I., Kambe N. et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood. 2005; 105 (3): 1195–1197.
19. Hedl M., Li J., Cho J.H., Abraham С. Chronic stimulation of Nod2 mediates tolerance to bacterial products. Proc. Natl Acad. Sci. USA. 2007; 10 4 (49): 19440–19445. DOI: 10.1073/pnas.0706097104.
20. Buhner S., Buning С., Genschel J. et al. Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut. 2006; 55 (3): 342–347. DOI: 10.1136/gut.2005.065557.
21. Loo Y.M., Gale M. Immune signaling by RIG-I-like receptors. Immunity. 2011; 34 (5): 680–692. DOI: 10.1016/j.immuni.2011.05.003.
22. Satoh T., Kato H., Kumagai Y. et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc. Natl Acad. Sci. USA. 2010; 107 (4): 1512–1517. DOI: 10.1073/pnas.0912986107.
23. Wagner K.D., Wagner N. Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol. Ther. 2010; 125 (3): 423–435. DOI: 10.1016/j.pharmthera.2009.12.001.
24. Maciejewska-Karłowska A. Polymorphic variants of the PPAR (Peroxisome Proliferator-Activated Receptor) genes: relevance for athletic performance. Trends Sport Sci. 2013; 1 (20): 5–15.
25. Culver D.A., Barna B.P., Raychaudhuri B. et al. Peroxisome proliferator-activated receptor gamma activity is deficient in alveolar macrophages in pulmonary sarcoidosis. Am. J. Respir. Cell Mol. Biol. 2004; 30 (1): 1–5. DOI: 10.1165/rcmb.2003-0304RC.
26. Huizar I., Malur A., Patel J. et al. The role of PPAR-gamma in carbon nanotube-elicited granulomatous lung inf lammation. Respir. Res. 2013; 14: 7. DOI: 10.1186/1465-9921-14-7.
27. Maver A., Medica I., Salobir B. et al. Peroxisome proliferator-activated receptor gamma/Pro12Ala polymorphism and peroxisome proliferator-activated receptor gamma coactivator-1 alpha/Gly482Ser polymorphism in patients with sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. 2008; 25 (1): 29–35.
28. Ikeda T., Hayashi S., Kamikawaji N. et al. Adverse effect of chronic tonsillitis on clinical course of sarcoidosis in relation to HLA distribution. Chest. 1992; 101 (3): 758–762. DOI: 10.1378/chest.101.3.758.
29. Rybicki B.A., Maliarik M.J. Poisson L.M., et al. The major histocompatibility complex gene region and sarcoidosis susceptibility in African Americans. Am. J. Respir. Crit. Care Med. 2003; 167 (3): 444–449. DOI: 10.1164/rccm.2112060.
30. Wolin A., Lahtela E.L., Anttila V. et al. SNP Variants in major histocompatibility complex are associated with sarcoidosis susceptibility – a joint analysis in four European populations. Front. Immunol. 2017; 8: 422. DOI: 10.3389/fimmu.2017.00422.
31. Grunewald J., Brynedal B., Darlington P. et al. Different HLA-DRB1 allele distributions in distinct clinical subgroups of sarcoidosis patients. Respir. Res. 2010; 11: 25. DOI: 10.1186/1465-9921-11-25.
32. Hänsch H.C., Smith D.A., Mielke M.E. et al. Mechanisms of granuloma formation in murine Mycobacterium avium infection: the contribution of CD4+ T cells. Int. Immunol. 1996; 8 (8): 1299–1310. DOI: 10.1093/intimm/8.8.1299.
33. Sallusto F., Lanzavecchia A. Heterogeneity of CD41+ memory T cells: functional modules for tailored immunity. Eur. J. Immunol. 2009; 39 (8): 2076–2082. DOI: 10.1002/eji.200939722.
34. Tao J.H., Cheng M., Tang J.P. et al. Foxp3, Regulatory T-cell, and autoimmune diseases. Inf lammation. 2017; 40 (1): 328–339. DOI: 10.1007/s10753-016-0470-8.
35. Lee M., Bae S., Lee Y. Association between FOXP3 polymorphisms and susceptibility to autoimmune diseases: a meta-analysis. Autoimmunity. 2015; 48 (7): 445–452. DOI: 10.3109/08916934.2015.1045582.
36. Takano Y., Niimi T. Sato S. et al. Effects of FOXP3 gene polymorphism in sarcoidosis patients. Sarcoidosis Vasc. Diffuse Lung Dis. 2007; 24 (2): 102–105.
37. Малышева И.Е., Топчиева Л.В., Тихонович Э.Л. и др. Ассоциация полиморфизма – 3279 C>A гена FOXP3 с риском развития саркоидоза легких. Терапевтический архив. 2017; 89 (12): 64–67. DOI: 10.17116/ter-arkh2017891264-67.
38. Wikén M., Grunewald J., Eklund A., Wahlström J. Multiparameter phenotyping of T-cell subsets in distinct subgroups of patients with pulmonary sarcoidosis. J. Intern. Med. 2012; 271 (1): 90–103. DOI: 10.1111/j.1365-2796.2011.02414.x.
39. Nguyen T., Liu X.K., Zhang Y., Dong C. BTNL2, a butyrophilin-like molecule that functions to inhibit T-cell activation. J. Immunol. 2006; 176 (12): 7354–7360. DOI: 10.4049/jimmunol.176.12.7354.
40. Zissel G., Ernst M., Schlaak M., Müller-Quernheim J. Accessory function of alveolar macrophages from patients with sarcoidosis and other granulomatous and nongranulomatous lung diseases. J. Investig Med. 1997; 45 (2): 75–86.
41. Rybicki B.A., Walewski J.L., Maliarik M.J. et al. The BTNL2 gene and sarcoidosis susceptibility in African Americans and Whites. Am. J. Hum. Genet. 2005; 77 (3): 491–499. DOI: 10.1086/444435.
42. Krein P.M., Winston B.W. Roles for insulin-like growth factor I and transforming growth factor-beta in fibrotic lung disease. Chest. 2002; 122 (6, Suppl.): 289S–293S. DOI: 10.1378/chest.122.6_suppl.289s.
43. Prud’homme G.J. Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab. Invest. 2007; 87 (11): 1077–1091.
44. Muraközy G., Gaede K.I., Zissel G. et al. Analysis of gene polymorphisms in interleukin-10 and transforming growер factor-beta 1 in sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. 2001; 18 (2): 165–169.
45. Gaede K.I., Amicosante M., Schürmann M. et al. Function associated transforming growth factor-beta gene polymorphism in chronic beryllium disease. J. Mol. Med. (Berlin). 2005; 83 (5): 397–405. DOI: 10.1007/s00109-004-0626-0.
46. Kruit A., Grutters J.C., Ruven H.J. et al. Transforming growth factor-beta gene polymorphisms in sarcoidosis patients with and without fibrosis. Chest. 2006; 129 (6): 1584–1591. DOI: 10.1378/chest.129.6.1584.
47. Smith N.L., Denning D.V. Clinical implications of interferon-gamma genetic and epigenetic variants. Immunology. 2014; 143 (4): 499–511. DOI: 10.1111/imm.12362.
48. Saltini C., Spurzem J.R., Lee J.J. et al. Spontaneous release of interleukin 2 by lung T lymphocytes in active pulmonary sarcoidosis is primarily from the Leu3+DR+ T cell subset. J. Clin. Invest. 1986; 77 (6): 1962–1970. DOI: 10.1172/JCI112525.
49. Broos C.E., van Nimwegen M., Hoogsteden H.C. et al. Granuloma formation in pulmonary sarcoidosis. Front. Immunol. 2013; 4: 437. DOI: 10.3389/fimmu.2013.00437.
50. Gudmundsson G., Hunninghake G.W. Interferon-gamma is necessary for the expression of hypersensitivity pneumonitis. J. Clin. Invest. 1997; 99 (10): 2386–2390. DOI: 10.1172/JCI119420.
51. Moller D.R., Forman J.D., Liu M.C. et al. Enhanced expression of IL-12 associated with Th1 cytokine profiles in active pulmonary sarcoidosis. J. Immunol. 1996; 156 (12): 4952–4960.
52. Bream J.H., Ping A., Zhang X. et. al. A single nucleotide polymorphism in the proximal IFN-gamma promoter alters control of gene transcription. Genes Immun. 2002; 3: 165–169. DOI: 10.1038/sj.gene.6363870.
53. Pravica V., Perrey C., Stevens A. et al. A single nucleotide polymorphism in the first intron of the human INF-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high INF-gamma production. Hum. Immunol. 2000; 61 (9): 863–866. DOI: 10.1016/S0198-8859(00)00167-1.
54. Wysoczanska B., Bogunia-Kubik K., Lange A. INF-gamma and HLA polymorphisms in sarcoidosis. Gen. Immun. 2003; 4: S44.
55. Kieszko R., Krawczyk P., Chocholska S. et al. TNF-alpha and TNF-beta gene polymorphisms in Polish patients with sarcoidosis. Connection with susceptibility and prognosis. Sarcoidosis Vasc. Diffuse Lung Dis. 2010; 27 (2): 131–137.
56. Feng Y., Zhou J., Gu C. et al. Association of six well-characterized polymorphisms in TNF-α and TNF-β genes with sarcoidosis: a meta-analysis. PLoS One. 2013; 8 (11): e80150. DOI: 10.1371/journal.pone.0080150.
57. Mrazek F., Holla L.I., Hutyrova B. et al. Association of tumour necrosis factor-alpha, lymphotoxin-alpha and HLA-DRB1 gene polymorphisms with Löfgren's syndrome in Czech patients with sarcoidosis. Tissue Antigens. 2005; 65 (2): 163–171. DOI: 10.1111/j.1399-0039.2005.00370.x.
58. Xie H.J., Wu M., Niu Y. et al. Associations between tumor necrosis factor alpha gene polymorphism and sarcoidosis: a meta-analysis. Mol. Biol. Rep. 2014; 41 (7): 4475-4480. DOI: 10.1007/s11033-014-3318-z.
Рецензия
Для цитирования:
Малышева И.Е., Топчиева Л.В., Тихонович Э.Л. Роль полиморфизма генов в чувствительности к саркоидозу легких. Пульмонология. 2019;29(5):596-603. https://doi.org/10.18093/0869-0189-2019-29-5-596-603
For citation:
Malysheva I.E., Topchiyeva L.V., Tikhonovich E.L. A role оf gene polymorphism for susceptibility to pulmonary sarcoidosis. PULMONOLOGIYA. 2019;29(5):596-603. (In Russ.) https://doi.org/10.18093/0869-0189-2019-29-5-596-603