Preview

PULMONOLOGIYA

Advanced search

Particle pollution as a risk factor for lung carcinoma

https://doi.org/10.18093/0869-0189-2019-29-4-477-485

Abstract

Current view on a relationship between particle pollution, morbidity and mortality of lung carcinoma were discussed in the article. Published epidemiological, clinical and laboratory studies suggest particle pollution, especially metal containing particulate matter (PM), to be a risk factor for lung carcinoma occurrence. PM-associated injury of epithelial cell genome and epigenetic lesions are an important part of pathogenesis of lung carcinoma. Systemic research findings and formalized reports could improve our knowledge on lung cancer pathogenesis and could be used in clinical practice for risk assessment, early detection and prognosis of lung cancer and improvement in treatment efficacy.

About the Authors

A. F. Kolpakova
Federal Research Institute of Computational Technologies, Siberian Department of Russian Academy of Science
Russian Federation

Alla F. Kolpakova, Doctor of Medicine, Professor, Leading Researcher, Laboratory of Bioinformatics

ul. Akademika Rzhanova 6, Novosibirsk, 630090



R. N. Sharipov
BIOSOFT.RU LLC; Novosibirsk National Research University
Russian Federation

Ruslan N. Sharipov, Head of Projects, BIOSOFT.RU LLC, Senior Teacher, Novosibirsk National Research University

ul. Russkaya 41/1, Novosibirsk, 630058, 

ul. Pirogova 2, Novosibirsk, 630090



O. A. Volkova
"Institute of Cytology and Genetics" Federal Research Center, Siberian Department of Russian Academy of Science
Russian Federation

Oksana A. Volkova, Candidate of Biology, Researcher, Laboratory of Genetic Engineering

ul. Akademika Lavrent’yeva 10, Novosibirsk, 630090



F. A. Kolpakov
Federal Research Institute of Computational Technologies, Siberian Department of Russian Academy of Science; BIOSOFT.RU LLC
Russian Federation

Fedor A. Kolpakov, Candidate of Biology, Head of Laboratory of Bioinformatics, Federal Research Institute of Computational Technologies, Siberian Department of Russian Academy of Science; Engineering Director, BIOSOFT.RU LLC

ul. Akademika Rzhanova 6, Novosibirsk, 630090, 

ul. Russkaya 41/1, Novosibirsk, 630058



References

1. Kaprina A.D., Starinskiy V.V., Petrova G.V., eds. [Malignancies in Russia, 2016 (morbidity and mortality)]. Moscow: MNIOI im. P.A.Gertsena – filial FGBU «NMITs radiologii» Minzdrava Rossii; 2018. Available at: http://www.oncology.ru/service/statistics/malignant_tumors/2016.pdf [Accessed: March 01, 2018] (in Russian).

2. American Cancer Society. Cancer Facts & Figures 2017. Atlanta: American Cancer Society; 2017. Available at: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2017/cancer-facts-and-figures-2017.pdf [Accessed: March 01, 2018].

3. Outdoor Air Pollution. Volume 109. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon, France: International Agency for Research on Cancer; World Health Organization; 2016. Available at: http://monographs.iarc.fr/ENG/Monographs/vol109/mono109.pdf [Accessed at: 1 March 2018].

4. Cohen A.J., Brauer M., Burnett R. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017; 389 (10082): 1907–1918. DOI: 10.1016/S0140-6736(17)30505-6.

5. Jantzen K., Møller P., Karottki D.G. et al. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells. Toxicology. 2016; 359–360: 11–18. DOI: 10.1016/j.tox.2016.06.007.

6. Traboulsi H., Guerrina N., Iu M., Maysinger D. Inhaled pollutants: the molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter. Int. J. Mol. Sci. 2017; 18 (2): 243. DOI: 10.3390/ijms18020243.

7. Weichenthal S., Bai L., Hatzopoulou M. et al. Long-term exposure to ambient ultrafine particles and respiratory disease incidence in Toronto, Canada: a cohort study. Environ. Health. 2017; 16 (1): 64. DOI: 10.1186/s12940-017-0276-7.

8. Gharibvand L., Shavlik D., Ghamsary M. et al. The association between ambient fine particulate air pollution and lung cancer incidence: results from the AHSMOG-2 study. Environ. Health Perspect. 2017; 125 (3): 378–384. DOI: 10.1289/EHP124.

9. Huang F., Pan B., Wu J. et al. Relationship between exposure to PM2.5 and lung cancer incidence and mortality: a meta-analysis. Oncotarget. 2017; 8 (26): 43322–43331. DOI: 10.18632/oncotarget.17313.

10. Sifaki-Pistolla D., Lionis C., Koinis F. et al. Lung cancer and annual mean exposure to outdoor air pollution in Crete, Greece. Eur. J. Cancer Prev. 2017; 26: S208–S214. DOI: 10.1097/CEJ.0000000000000407.

11. Fu J., Jiang D., Lin G. et al. An ecological analysis of PM2.5 concentrations and lung cancer mortality rates in China. BMJ Open. 2015; 5 (11): e009452. DOI: 10.1136/bmjopen-2015-009452.

12. Yin P., Brauer M., Cohen A. et al. Long-term fine particulate matter exposure and nonaccidental and cause-specific mortality in a large national cohort of Chinese men. Environ. Health Perspect. 2017; 125 (11): 117002. DOI: 10.1289/EHP1673.

13. Kazantseva M.V. [Morbidity and mortality of malignancies in population of Krasnodar krai]. Kubanskiy nauchnyy meditsinskiy vestnik. 2014; 1 (143): 96–99 (in Russian).

14. Berezutskaya T.V., Kotova V.E., Ivanov V.P. et al. [An analysis of morbidity of lung carcinoma at Kursk region, 2007 – 2014]. Auditorium. 2015; 4 (08): 34–37. Available at: https://cyberleninka.ru/article/n/analiz-zabolevaemosti-rakom-legkogo-v-kurskoy-oblasti-s-2007-po-2014-g.pdf [Accessed: March 1, 2018] (in Russian).

15. Davletnurov N.Kh., Stepanov E.G., Zherebtsov A.S., Permina G.Ya. [Morbidity of malignant diseases as an indicator of medical and ecological safety of territories (evidence from Bashkortostan Republic)]. Meditsina truda i ekologiya cheloveka. 2017; 2 (10): 53–64 (in Russian).

16. Tomczak A., Miller A.B., Weichenthal S.A. et al. Long-term exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian National Breast Screening Study. Int. J. Cancer. 2016; 139 (9): 1958–1966. DOI: 10.1002/ijc.30255.

17. Raaschou-Nielsen O., Beelen R., Wang M. et al. Particulate matter air pollution components and risk for lung cancer. Environ. Int. 2016; 87: 66–73. DOI: 10.1016/j.envint.2015.11.007.

18. Rakhmanin Yu.A., Levanchuk A.V. [Hygienic evaluation of atmospheric air in regions with different road traffic]. Gigiena i sanitariya. 2016; 95 (12): 1117–1121 (in Russian)

19. You S., Yao Z., Dai Y., Wang CH. A comparison of PM exposure related to emission hotspots in a hot and humid urban environment: concentrations, compositions, respiratory deposition, and potential health risks. Sci. Total Environ. 2017; 599–600: 464–473. DOI: 10.1016/j.scitotenv.2017.04.217.

20. Li K., Liang T., Wang L. Risk assessment of atmospheric heavy metals exposure in Baotou, a typical industrial city in northern China. Environ. Geochem. Health. 2016; 38 (3): 843–853. DOI: 10.1007/s10653-015-9765-1.

21. Binkowski Ł.J., Rogoziński P., Błaszczyk M. et al. Relationship between air pollution and metal levels in cancerous and non-cancerous lung tissues. J. Environ. Sci. Health. 2016; 51 (14): 1303–1308. DOI: 10.1080/10934529.2016.1215200.

22. Nawrot T.S., Martens D.S., Hara A. et al. Association of total cancer and lung cancer with environmental exposure to cadmium: the meta-analytical evidence. Cancer Causes Control. 2015; 26 (9): 1281–1288. DOI: 10.1007/s10552-015-0621-5.

23. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 86. Cobalt in Hard Metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide. Lyon, France: International Agency for Research on Cancer; World Health Organization; 2006. Available at: https://monographs.iarc.fr/ENG/Monographs/vol86/mono86.pdf [Accessed: March 1, 2018].

24. Black M.B., Dodd D.E., McMullen P.D. et al. Using gene expression profiling to evaluate cellular responses in mouse lungs exposed to V2O5 and a group of other mouse lung tumorigens and non-tumorigens. Regul. Toxicol. Pharmacol. 2015; 73 (1): 339–347. DOI: 10.1016/j.yrtph.2015.07.017.

25. Manjanatha M.G., Shelton S.D., Haber L. et al. Evaluation of cII mutations in lung of male Big Blue mice exposed by inhalation to vanadium pentoxide for up to 8 weeks. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015; 789–790: 46–52. DOI: 10.1016/j.mrgentox.2015.06.014.

26. Li R., Zhou R., Zhang J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases (Review). Oncology Lett. 2018; 15 (5): 7506–7514. DOI: 10.3892/ol.2018.8355.

27. Liu C., Guo H., Cheng X. et al. Exposure to airborne PM2.5 suppresses microRNA expression and deregulates target oncogenes that cause neoplastic transformation in NIH3T3 cells. Oncotarget. 2015; 6: 29428–29439. DOI: 10.18632/oncotarget.5005.

28. Liu X., Chen Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J. Transl. Med. 2017; 15 (1): 207. DOI: 10.1186/s12967-017-1306-5.

29. Ekoue D.N., He C., Diamond A.M., Bonini M.G. Manganese superoxide dismutase and glutathione peroxidase-1 contribute to the rise and fall of mitochondrial reactive oxygen species which drive oncogenesis. Biochim. Biophys. Acta. Bioenerg. 2017; 1858 (8): 628–632. DOI: 10.1016/j.bbabio.2017.01.006.

30. Weichenthal S., Crouse D.L., Pinault L. et al. Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). Environ. Res. 2016; 146: 92–99. DOI: 10.1016/j.envres.2015.12.013.

31. Sancini G., Farina F., Battaglia C. et al. Health risk assessment for air pollutants: alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM2.5). PLoS One. 2014; 9 (10): e109685. DOI: 10.1371/journal.pone.0109685.

32. Zhou Z., Liu Y., Duan F. et al. Transcriptomic analyses of the biological effects of airborne PM2.5 exposure on human bronchial epithelial cells. PLoS One. 2015; 10 (9): e0138267. DOI: 10.1371/journal.pone.0138267.

33. Wan R., Mo Y., Zhang Z. et al. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part. Fibre Toxicol. 2017; 14 (1): 38. DOI: 10.1186/s12989-017-0219-z.

34. Ding X., Wang M., Chu H. et al. Global gene expression profiling of human bronchial epithelial cells exposed to airborne fine particulate matter collected from Wuhan, China. Toxicol. Lett. 2014; 228 (1): 25–33. DOI: 10.1016/j.toxlet.2014.04.010.

35. Toyooka S., Mitsudomi T., Soh J. et al. Molecular oncology of lung cancer. Gen. Thorac. Cardiovasc. Surg. 2011. 59 (8). 527–537. DOI: 10.1007/s11748-010-0743-3.

36. Zhou W., Tian D., He J. et al. Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation. Oncotarget. 2016; 7 (15): 20691–20703. DOI: 10.18632/oncotarget.7842.

37. Yang B., Chen D. Zhao H. et al. The effects for PM2.5 exposure on non-small-cell lung cancer induced motility and proliferation. Springerplus. 2016; 5 (1): 2059. DOI: 10.1186/s40064-016-3734-8.

38. Ivanov S.D. [Iron as a carcinogenic ecotoxicant]. Toksikologicheskiy vestnik. 2011; 107 (2): 34–41 (in Russian).

39. Vartanyan A.A. [Iron metabolism, ferroptosis and cancer]. Rossiyskiy bioterapevticheskiy zhurnal. 2017; 16 (3): 14–20. DOI: 10.17650/1726-9784-2017-16-3-14-20 (in Russian).

40. Scanlon S.E., Scanlon C.D., Hegan D.C. et al. Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells. Carcinogenesis. 2017; 38 (6): 627–637. DOI: 10.1093/carcin/bgx038.

41. Sas-Nowosielska H., Pawlas N. Heavy metals in the cell nucleus — role in pathogenesis. Acta Biochim. Pol. 2015; 62 (1): 7–13. DOI: 10.18388/abp.2014_834.

42. Pandeh M., Fathi S., Zare Sakhvidi M.J. et al. Oxidative stress and early DNA damage in workers exposed to iron-rich metal fumes. Environ. Sci. Pollut. Res. 2017; 24 (10): 9645–9650. DOI: 10.1007/s11356-017-8657-6.

43. Shi Y.X., Wang Y., Li X. et al. Genome-wide DNA methylation profiling reveals novel epigenetic signatures in squamous cell lung cancer. BMC Genomics. 2017; 18 (1): 901. DOI: 10.1186/s12864-017-4223-3.

44. Wei H., Liang F., Cheng W. et al. The mechanisms for lung cancer risk of PM2.5: Induction of epithelial-mesenchymal transition and cancer stem cell properties in human non-small cell lung cancer cells. Environ. Toxicol. 2017; 32 (11): 2341–2351. DOI: 10.1002/tox.22437.

45. Miyazono K., Ehata S., Koinuma D. Tumor-promoting functions of transforming growth factor-β in progression of cancer. Ups. J. Med. Sci. 2012; 117 (2): 143–152. DOI: 10.3109/03009734.2011.638729.

46. Shevchenko V.E., Bryukhovetskiy I.S., Nikiforova Z.N. et al. [A role of transforming growth factor beta-1 for oncogenesis of human lung adenocarcinoma]. Uspekhi molekulyarnoy onkologii. 2017; 4 (3): 67–74 (in Russian).

47. Yang D., Ma M., Zhou W. et al. Inhibition of miR-32 activity promoted EMT induced by PM2.5 exposure through the modulation of the Smad1-mediated signaling pathways in lung cancer cells. Chemosphere. 2017; 184: 289–298. DOI: 10.1016/j.chemosphere.2017.05.152.

48. Wang Y., Lin Z., Huang H. et al. AMPK is required for PM2.5-induced autophagy in human lung epithelial A549 cells. Int. J. Clin. Exp. Med. 2015; 8 (1): 58–72.

49. Liu T., Wu B., Wang Y. et al. Particulate matter 2.5 induces autophagy via inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin kinase signaling pathway in human bronchial epithelial cells. Mol. Med. Report. 2015; 12 (2): 1914–1922. DOI: 10.3892/mmr.2015.3577.

50. Longhin E., Holme J.A., Gutzkow K.B. et al. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Part. Fibre Toxicol. 2013; 10: 63. DOI: 10.1186/1743-8977-10-63.

51. Deng X., Zhang F., Wang L., et al. Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells. Apoptosis. 2014; 19 (7): 1099–1112. DOI: 10.1007/s10495-014-0980-5.

52. Deng X., Feng N., Zheng M. et al. PM2.5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochim. Biophys. Acta Gen. Subj. 2017; 1861 (2): 112–125. DOI: 10.1016/j.bbagen.2016.11.009.

53. Li J., Li W.X., Bai C., Song Y. Particulate matter-induced epigenetic changes and lung cancer. Clin. Respir. J. 2017; 11 (5): 539–546. DOI: 10.1111/crj.12389.

54. Severgina L.O., Byrsa, O.S., Kondratyuk M.R. [Molecular basis and diagnostic features of small-cell lung cancer]. Prostranstvo i vremya. 2016; 3–4 (25–26): 284–290. Available at: https://cyberleninka.ru/article/v/molekulyarno-geneticheskie-osnovy-razvitiya-i-osobennosti-diagnostiki-melkokletochnogo-raka-lyogkogo [Accessed: March 1, 2018] (in Russian).

55. Mari-Alexandre J., Diaz-Lagares A., Villalba M. et al. Translating cancer epigenomics into the clinic: focus on lung cancer. Transl. Res. 2017; 189: 76–92. DOI: 10.1016/j.trsl.2017.05.008.

56. Bhargava A., Bunkar N., Aglawe A. et al. Epigenetic biomarkers for risk assessment of particulate matter associated lung cancer. Curr. Drug Targets. 2018; 19 (10): 1127–1147. DOI: 10.2174/1389450118666170911114342.


Review

For citations:


Kolpakova A.F., Sharipov R.N., Volkova O.A., Kolpakov F.A. Particle pollution as a risk factor for lung carcinoma. PULMONOLOGIYA. 2019;29(4):477-485. (In Russ.) https://doi.org/10.18093/0869-0189-2019-29-4-477-485

Views: 966


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)