Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Измерение диффузионной способности легких по монооксиду углерода методом одиночного вдоха: стандарты Американского торакального и Европейского респираторного обществ (часть 1-я)


https://doi.org/10.18093/0869-0189-2019-29-2-149-158

Полный текст:


Аннотация

В данном документе приведены обновленные технические стандарты Европейского респираторного общества (European Respiratory Society – ERS) и Американского торакального общества (American Thoracic Society – ATS) по измерению поглощения монооксида угле- рода в легких методом одиночного вдоха. Последние рекомендации были опубликованы в 2005 г. Несмотря на то, что оба термина – диффузионная способность легких (DLCO) и трансфер-фактор СО (TLCO) – одинаково характеризуют поглощение монооксида углеро- да в легких, в данном документе используется термин DLCO. Специалистами совместной рабочей группы ERS и ATS проведен обзор недавно опубликованной литературы по этому вопросу и существующих технических возможностей и аппаратуры, производимой в мире. Представленные в данном документе рекомендации являются результатом консенсуса членов рабочей группы в соответствии с доказательствами, существующими сегодня по разным аспектам измерения DLCO. Более того, в документе отражено мнение экспер- тов, вошедших в рабочую группу, по тем вопросам, для которых высококачественные доказательства либо отсутствуют, либо являются недостаточно полными. Основные изменения в данных технических стандартах связаны с измерением DLCO с помощью систем, исполь- зующих газоанализаторы быстрого реагирования (RGA-газоанализаторы) для монооксида углерода и индикаторного газа, которые сего- дня являются наиболее распространенными из выпускаемых аппаратов для измерения DLCO. Технические усовершенствования этих новых систем позволяют улучшить измерение DLCO и определить новые стандарты измерения легочного газообмена. Дополнительные материалы к данной статье доступны на сайте https://erj.ersjournals.com


Об авторе

статья Редакционная

Россия


Список литературы

1. Krogh M. The diffusion of gases through the lungs of man. J. Physiol. (Lond.) 1914; 49 (4): 271–300.

2. Ogilvie C.M., Forster R.E., Blakemore W.S., Morton J.W. A standardized breath holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J. Clin. Invest. 1957; 36 (1, Pt 1): 1–17. DOI: 10.1172/JCI103402.

3. Graham B.L., Brusasco V., Burgos F. et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017; 49 (1): pii: 1600016. DOI: 10.1183/13993003.00016-2016.

4. MacIntyre N., Crapo R., Viegi G. et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005; 26 (4): 720–735. DOI: 10.1183/09031936.05.00034905.

5. American Thoracic Society. Single-breath carbon monoxide diffusing capacity (transfer factor). Recommendations for a standard technique: 1995 update. Am. J. Respir. Crit. Care Med. 1995; 152 (6, Pt 1): 2185–2198. DOI: 10.1164/ajrccm.152.6.8520796.

6. Cotes J.E., Chinn D.J., Quanjer P.H. et al. Standardization of the measurement of transfer factor (diffusing capacity). Eur. Respir. J. 1993; 16 (Suppl.): 41–52.

7. Forster R.E. Exchange of gases between alveolar air and pulmonary capillary blood: pulmonary diffusing capacity. Physiol. Rev. 1957; 37 (4): 391–452. DOI: 10.1152/physrev.1957.37.4.391.

8. MacIntyre N.R. Diffusing capacity of the lung for carbon monoxide. Respir. Care. 1989; 34: 489–499.

9. Crapo R.O., Forster R.E. 2nd. Carbon monoxide diffusing capacity. Clin. Chest Med. 1989; 10 92): 187–198.

10. Wilson A.F., Hearne J., Brennen M., Alfonso R. Measurement of transfer factor during constant exhalation. Thorax. 1994; 49 (11): 1121–1126.

11. Leathart G.L. Steady-state diffusing capacity determined by a simplified method. Thorax. 1962; 17 (4): 302–307. DOI: 10.1136/thx.17.4.302.

12. Meyer M., Scheid P., Riepl G. et al. Pulmonary diffusing capacities for O2 and CO measured by a rebreathing technique. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981; 51 (6): 1643–1650. DOI: 10.1152/jappl.1981.51.6.1643.

13. Weibel E.R. Morphometric estimation of pulmonary diffusion capacity: I. Model and method. Respir. Physiol. 1971; 11 (1): 54–75. DOI: 10.1016/0034-5687(70)90102-7.

14. Forster R.E., Fowler W.S., Bates D.V., van Lingen B. The absorption of carbon monoxide by the lungs during breath-holding. J. Clin. Invest. 1954; 33 (8): 1135–1145/ DOI: 10.1172/JCI102987.

15. MacIntyre N.R., Leatherman N., Deitz J.L. et al. Distribution and uptake of helium, carbon monoxide and acetylene in the lungs during high frequency oscillatory ventilation. Respir. Physiol. 1986; 63 (2): 201–212.

16. Comroe J.H. Jr. Pulmonary diffusing capacity for carbon monoxide (DLCO). Am. Rev. Respir. Dis. 1975; 111 (2): 225–228.

17. Roughton F.J., Forster R.E. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J. Appl. Physiol. 1957; 11 (2): 290–302. DOI: 10.1152/jappl.1957.11.2.290.

18. Michaelson E.D., Sackner M.A., Johnson R.L. Jr. Vertical distribution of pulmonary diffusing capacity and capillary blood flow in man. J. Clin. Invest. 1973; 52 (2): 359–365. DOI: 10.1172/JCI107192.

19. MacIntyre N.R., Nadel J.A. Regional diffusing capacity in normal lungs during a slow exhalation. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982; 52 (6): 1487–1492. DOI: 10.1152/jappl.1982.52.6.1487.

20. Hughes J.M., Pride N.B. In defense of the carbon monoxide transfer coefficient KCO (TL/VA). Eur. Respir. J. 2001; 17 (2): 168–174.

21. Stam H., Versprille A., Bogaard J. The components of the carbon monoxide diffusing capacity in man dependent on alveolar volume. Bull. Eur. Physiopathol. Respir. 1983; 19 (1): 17–22.

22. Johnson D.C. Importance of adjusting carbon monoxide diffusing capacity (DLCO) and carbon monoxide transfer coefficient (KCO) for alveolar volume. Respir. Med. 2000; 94 (1): 28–37. DOI: 10.1053/rmed.1999.0740.

23. Filley G.F., MacIntosh D.J., Wright G.W. Carbon monoxide uptake and pulmonary diffusing capacity in normal subjects at rest and during exercise. J. Clin. Invest. 1954; 33 (4): 530–539. DOI: 10.1172/JCI102923.

24. Leech J.A., Martz L., Liben A., Becklake M.R. Diffusing capacity for carbon monoxide: the effects of different durations of breath-hold time and alveolar volume and of carbon monoxide back pressure on calculated results. Am. Rev. Respir. Dis 1985; 132 (5): 1127–1129.

25. McGrath M.W., Thomson M.L. The effect of age, body size and lung volume change on alveolar-capillary permeability and diffusing capacity in man. J. Physiol. (Lond.) 1959; 146 (3): 572–582.

26. Newth C.J., Cotton D.J., Nadel J.A. Pulmonary diffusing capacity measured at multiple intervals during a single exhalation in man. J. Appl. Physiol. 1977; 43 (4): 617–625. DOI: 10.1152/jappl.1977.43.4.617.

27. Graham B.L., Dosman J.A., Cotton D.J. A theoretical analysis of the single breath diffusing capacity for carbon monoxide. IEEE Trans. Biomed. Eng. 1980; 27 (4): 221–227.

28. Huang Y.C., Helms M.J., MacIntyre N.R. Normal values for single exhalation diffusing capacity and pulmonary capillary blood flow in sitting, supine positions and during mild exercise. Chest. 1994; 105 (2): 501–508.

29. Stam H., Kreuzer F.J., Versprille A. Effect of lung volume and positional changes on pulmonary diffusing capacity and its components. J. Appl. Physiol. 1991; 71 (4): 1477–1488. DOI: 10.1152/jappl.1991.71.4.1477.

30. Stokes D.L., MacIntyre N.R., Nadel J.A. Nonlinear increases in diffusing capacity during exercise by seated and supine subjects. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981; 51 (4): 858–863. DOI: 10.1152/jappl.1981.51.4.858.

31. Johnson R.L. Jr., Spicer W.S., Bishop J.M., Forster R.E. Pulmonary capillary blood volume, flow and diffusing capacity during exercise. J. Appl. Physiol. 1960; 15: 893–902. DOI: 10.1152/jappl.1960.15.5.893.

32. Smith T.С., Rankin J. Pulmonary diffusing capacity and the capillary bed during Valsalva and Müller maneuvers. J. Appl. Physiol. 1969; 27 (6): 826–833. DOI: 10.1152/jappl.1969.27.6.826.

33. Cotes J.E., Snidal D.P., Shepard R.H. Effect of negative intra-alveolar pressure on pulmonary diffusing capacity. J. Appl. Physiol. 1960; 15: 372–376. DOI: 10.1152/jappl.1960.15.3.372.

34. Cotton D.J., Mink J.T., Graham B.L. Effect of high negative inspiratory pressure on single breath CO diffusing capacity. Respir. Physiol. 1983; 54 (1): 19–29.

35. Cotton D.J., Prabhu M.B., Mink J.T., Graham B.L. Effects of ventilation inhomogeneity on DLCO SB-3EQ in normal subjects. J. Appl. Physiol. 1992; 73 (6): 2623–2630. DOI: 10.1152/jappl.1992.73.6.2623.

36. Cotton D.J., Prabhu M.B., Mink J.T., Graham B.L. Effect of ventilation inhomogeneity on “intrabreath” measurements of diffusing capacity in normal subjects. J. Appl. Physiol. 1993; 75 (2): 927–932. DOI: 10.1152/jappl.1993.75.2.927.

37. Epler G.R., Saber F.A., Gaensler E.A. Determination of severe impairment (disability) in interstitial lung disease. Am. Rev. Respir. Dis 1980; 121 (4): 647–659.

38. Viegi G., Paoletti P., Di Prediletto R. et al. Carbon monoxide diffusing capacity, other indices of lung function, and respiratory symptoms in a general population sample. Am. Rev. Respir. Dis. 1990; 141 (4, Pt 1): 1033–1039. DOI: 10.1164/ajrccm/141.4_Pt_1.1033.

39. Nordenfelt I., Svensson G. The transfer factor (diffusing capacity) as a predictor of hypoxemia during exercise in restrictive and chronic obstructive pulmonary disease. Clin. Physiol. 1987; 7 (5): 423–430.

40. Gelb A.F., Gold W.M., Wright R.R. et al. Physiologic diagnosis of subclinical emphysema. Am. Rev. Respir. Dis. 1973; 107 (1): 50–63.

41. Rosenberg E., Young R.C. Jr. Potential value of diffusing capacity per liter of lung volume (DL/VA) for early detection of alveolar capillary defects. Lung. 1979; 157 (1): 23–29.

42. Renzetti A.D., Bleecker E.R., Epler G.R. et al. Evaluation of impairment/disability secondary to respiratory disorders. Am. Rev. Respir. Dis. 1986; 133 (6): 1205–1209.

43. Owens G.R., Rogers R.M., Pennock B.E., Levin D. The diffusing capacity as a predictor of arterial oxygen desaturation during exercise in patients with chronic obstructive pulmonary disease. N. Engl. J. Med. 1984; 310 (19): 1218–1221. DOI: 10.1056/NEJM198405103101903.

44. Morrison N.J., Abboud R.T., Ramadan F. et al. Comparison of single breath carbon monoxide diffusing capacity and pressure-volume curves in detecting emphysema. Am. Rev. Respir. Dis 1989; 139 (5): 1179–1187. DOI: 10.1164/ajrccm/139.5.1179.

45. Gould G.A., Redpath A.T., Ryan M. et al. Lung CT density correlates with measurements of airflow limitation and the diffusing capacity. Eur. Respir. J. 1991; 4: 141–146. Available at: https://erj.ersjournals.com/content/erj/4/2/141.full.pdf

46. Bates D. Uptake of CO in health and emphysema. Clin. Sci. 1952; 11: 21–32.

47. Clausen J.L., Zarins L.P., eds. Pulmonary function testing guidelines and controversies: equipment, methods and normal values. New York: Academic Press; 1982.

48. Quanjer P.H. Standardized lung function testing. Bull. Eur. Physiopathol. Respir. 1983; 19 (Suppl. 5): 39–44.

49. Morris A., Kanner R.E., Crapo R. et al. Clinical pulmonary function testing: a manual of uniform laboratory procedures. The 2nd Edition. Salt Lake City: Intermountain Thoracic Society; 1984.

50. Cotes J., ed Lung function: Assessment and Application in Medicine. The 5th Edition. London: Blackwell Scientific Publications; 1993.

51. Cotes J. Effect of variability in gas analysis on the reproducibility of the pulmonary diffusing capacity by the single breath method. Thorax. 1963; 18: 151–154. DOI: 10.1136/thx.18.2.151.

52. Chinn D.J., Naruse Y., Cotes J.E. Accuracy of gas analysis in lung function laboratories. Thorax. 1986; 41 (2): 133–137. DOI: 10.1136/thx.41.2.133

53. Graham B.L., Mink J.T., Cotton D.J. Implementing the three-equation method of measuring single breath carbon monoxide diffusing capacity. Can. Respir. J. 1996; 3 (4): 247–257. DOI: 10.1155/1996/567450.

54. Gardner R.M., Clausen J.L., Crapo R.O. et al. Quality assurance in pulmonary function laboratories. ATS position paper. Am. Rev. Respir. Dis. 1986; 134 (3): 625–627.

55. Glissmeyer E.W., Jensen R.L., Crapo R.O. et al. Initial testing with a carbon monoxide diffusing capacity simulator. J. Invest. Med. 1999; 47: 37A.

56. Hegewald M.J., Jensen R.L., Teeter J.G. et al. Long-term intersession variability for single-breath diffusing capacity. Respiration. 2012; 84 (5): 377–384. DOI: 10.1159/000334699.

57. Okubo T., Lenfant C. Calibration of gas chromatograph without standardized gas mixtures. Respir. Physiol. 1968; 4 (2): 255–259.

58. Jensen R.L., Crapo R.O. Diffusing capacity: how to get it right. Respir. Care. 2003; 48 (8): 777–782. Available at: http://rc.rcjournal.com/content/48/8/777?ijkey=56e479eaa589c562ad77ade6cdc8206525bdf8ad&keytype2=tf_ipsecsha

59. Miller M.R., Hankinson J., Brusasco V. et al. Standardisation of spirometry. Eur. Respir. J. 2005; 26 (2): 319–338. DOI: 10.1183/09031936.05.00034805.

60. Miller M.R., Crapo R., Hankinson J. et al. General considerations for lung function testing. Eur. Respir. J. 2005; 26 (1): 153–161. DOI: 10.1183/09031936.05.00034505.

61. Kendrick A.H., Johns D.P., Leeming J.P. Infection control of lung function equipment: a practical approach. Respir. Med. 2003; 97 (11): 1163–1179. DOI: 10.1016/S0954-6111(03)00223-3.


Дополнительные файлы

Для цитирования: Редакционная с. Измерение диффузионной способности легких по монооксиду углерода методом одиночного вдоха: стандарты Американского торакального и Европейского респираторного обществ (часть 1-я).  Пульмонология. 2019;29(2):149-158. https://doi.org/10.18093/0869-0189-2019-29-2-149-158

For citation: Editorial A. Measurement of Single-Breath Diffusing Capacity of the Lungs for Carbon Monoxide: new standards of European Respiratory Society and American Thoracic Society (рart 1). Russian Pulmonology. 2019;29(2):149-158. (In Russ.) https://doi.org/10.18093/0869-0189-2019-29-2-149-158

Просмотров: 41

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)