Lung function in athletes involved in skiing and speed skating
https://doi.org/10.18093/0869-0189-2019-29-1-62-69
Abstract
The aim of this study was to analyze lung function in athletes involved in endurance winter sports. Methods. Lung function was measured in 50 athletes including 30 skiers and 20 speed-skaters (24 men and 26 women aged 17 to 33 years; average age, 24.7 ± 3.8 years) using spirometry, body plethysmography and diffusion test. A control age- and sex-matched group consisted of medical students and junior physicians. Results. Lung function in athletes, both skiers and skaters, was significantly higher compared to that of the control group and to reference values (ECSC, 1993). The lung function was not related to the athletes' age. In the total group, the athletes' performance was significantly related to lung volume values (rank correlation). Conclusion. Thus, lung function of the athletes involved in winter sports, such as skiing and speed skating, and focused to building the physical endurance, is higher than in general population. The standard approach to interpretation of pulmonary function test results is based on a comparison of actual and reference values. This can lead to misdiagnosis of lung function impairments.
About the Authors
A. V. ChernyakRussian Federation
Alexander V. Chernyak - Candidate of Medicine, Head of Laboratory of Functional and Ultra-sound Investigations; Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia; functional diagnostic medicine practitioner, Department of functional and ultrasound diagnostics, D.D.Pletnev City Teaching Hospital, Moscow Healthcare Department.
Orekhovyy bul'var 28, Moscow, 115682; ul. Odinnadtsataya Parkovaya 32, Moscow, 105077; tel.: (495) 465-53-84.
SPIN: 9328-6440
G. V. Neklyudova
Russian Federation
Galina V. Neklyudova - Doctor of Medicine, Associate Professor, Department of Pulmonology, I.M.Sechenov First Moscow State Medical University, Healthcare Ministry of Russia (Sechenov University); Leading Researcher, Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia.
Orekhovyy bul'var 28, Moscow, 115682; Trubetskaya ul. 8, build. 2, Moscow, 119991; tel.: (495) 465-53-84.
SPIN: 8956-9125
Zh. K. Naumenko
Russian Federation
Zhanna K. Naumenko - Candidate of Medicine, Senior Researcher at Laboratory of Functional and Ultra-sound Investigations; Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia; functional diagnostic medicine practitioner, Department of functional and ultrasound diagnostics, D.D.Pletnev City Teaching Hospital, Moscow Healthcare Department.
Orekhovyy bul'var 28, Moscow, 115682; ul. Odinnadtsataya Parkovaya 32, Moscow, 105077; tel.: (495) 465-53-84.
SPIN: 7191-1758
T. L. Pashkova
Russian Federation
Tat'yana L. Pashkova - Candidate of Medicine, Senior Researcher at Laboratory of Functional and Ultra-sound Investigations; Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia.
Orekhovyy bul'var 28, Moscow, 115682; tel.: (495) 465-53-84.
References
1. Grippi M.A. [Pathophysiology of the Lungs]. Translated from English (ed. by Yu.V.Natochin). Moscow: Binom; St. Petersburg: Nevskiy Dialekt; 2000.
2. Amann M. Pulmonary system limitations to endurance exercise performance in humans. Exp. Physiol. 2012; 97 (3): 311–318. DOI: 10.1113/expphysiol.2011.058800.
3. Leischik R., Dworrak B. Ugly duckling or Nosferatu? Cardiac injury in endurance sport – screening recommendations. Eur. Rev. Med. Pharmacol. Sci. 2014; 18 (21): 3274–3290.
4. Brown P.I., Venables H.K., Liu H. et al. Ventilatory muscle strength, diaphragm thickness and pulmonary function in world-class powerlifters. Eur. J. Appl. Physiol. 2013; 113 (11): 2849–2855. DOI: 10.1007/s00421-013-2726-4.
5. Durmic T., Lazovic Popovic B., Zlatkovic Svenda M. et al. The training type influence on male elite athletes' ventilatory function. BMJ Open Sport Exerc. Med. 2017; 3 (1): e000240. DOI: 10.1136/bmjsem-2017-000240.
6. Myrianthefs P., Grammatopoulou I., Katsoulas T., Baltopoulos G. Spirometry may underestimate airway obstruction in professional Greek athletes. Clin. Respir. J. 2014; 8 (2): 240–247. DOI: 10.1111/crj.12066.
7. Bertholon J.F., Carles J., Teillac A. Assessment of ventilatory performance of athletes using the maximal expiratory flow-volume curve. Int. J. Sports Med. 1986; 7 (2): 80–85. DOI: 10.1055/s-2008-1025738.
8. Mazic S., Lazovic B., Djelic M. et al. Respiratory parameters in elite athletes – does sport have an influence? Rev. Port. Pneumol. (Engl. Ed.). 2015; 21 (4): 192–197. DOI: 10.1016/j.rppnen.2014.12.003.
9. Bonini M., Silvers W. Exercise-induced bronchoconstriction: background, prevalence, and sport considerations. Immunol. Allergy Clin. North Am. 2018; 38 (2): 205–214. DOI: 10.1016/j.iac.2018.01.007.
10. Rundell K.W., Slee J.B. Exercise and other indirect challenges to demonstrate asthma or exercise-induced bronchoconstriction in athletes. J. Allergy Clin. Immunol. 2008; 122 (2): 238–246. DOI: 10.1016/j.jaci.2008.06.014.
11. Fitch K. Therapeutic use exemptions (TUEs) at the Olympic Games 1992–2012. Br. J. Sports Med. 2013; 47 (13): 815–818. DOI: 10.1136/bjsports-2013-092460.
12. Fitch K.D. An overview of asthma and airway hyper-responsiveness in Olympic athletes. Br. J. Sports Med. 2012; 46 (6): 413–416. DOI: 10.1136/bjsports-2011-090814.
13. Rong C., Bei H., Yuzhu W., Mingwu Z. Lung function and cytokine levels in professional athletes. J. Asthma. 2008; 45 (4): 343–348. DOI: 10.1080/02770900801956371.
14. Nielsen H.B. Arterial desaturation during exercise in man: implication for O2 uptake and work capacity. Scand. J. Med. Sci. Sports. 2003; 13 (6): 339–358.
15. Chuchalin A.G., Aisanov Z.R., Chikina S.Yu. et al. [Federal Clinical Guidelines of Russian Respiratory Society on Spirometry]. Pul'monologiya. 2014; (6): 11–24. DOI: 10.18093/0869-0189-2014-0-6-11-24 (in Russian).
16. Miller M.R., Hankinson J., Brusasco V. et al. Standardisation of spirometry. Eur. Respir. J. 2005. 26 (2): 319–337. DOI: 10.1183/09031936.05.00034805.
17. Wanger J., Clausen J.L., Coates A. et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005; 26 (3): 511–522. DOI: 10.1183/09031936.05.00035005.
18. Macintyre N., Crapo R.O., Viegi G. et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005; 26 (4): 720–735. DOI: 10.1183/09031936.05.00034905.
19. Quanjer P.H., Tammeling G.J., Cotes J.E. et al. Lung volumes and forced ventilatory flows. Eur. Respir. J. 1993; 6 (Suppl. 16): 5–40.
20. Durmic T., Lazovic B., Djelic M. et al. Sport-specific influences on respiratory patterns in elite athletes. J. Bras. Pneumol. 2015; 41 (6): 516–522. DOI: 10.1590/S1806-37562015000000050.
21. Pellegrino R., Viegi G., Brusasco V. et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005; 26 (5): 948–968. DOI: 10.1183/09031936.05.00035205.
22. Quanjer P.H., Stanojevic S., Cole T.J. et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur. Respir. J. 2012; 40 (6): 1324–1243. DOI: 10.1183/09031936.00080312.
23. Han J., Dai L., Zhong N., Young D. Breathlessness or health status in chronic obstructive pulmonary disease: the impact of different definitions. COPD. 2015; 12 (2): 115–125. DOI: 10.3109/15412555.2014.974741.
24. Wingelaar T.T., Clarijs P., van Ooij P.A. et al. Modern assessment of pulmonary function in divers cannot rely on old reference values. Diving Hyperb. Med. 2018; 48 (1): 17–22. DOI: 10.28920/dhm48.1.17-22.
Review
For citations:
Chernyak A.V., Neklyudova G.V., Naumenko Zh.K., Pashkova T.L. Lung function in athletes involved in skiing and speed skating. PULMONOLOGIYA. 2019;29(1):62-69. (In Russ.) https://doi.org/10.18093/0869-0189-2019-29-1-62-69