Preview

PULMONOLOGIYA

Advanced search

Clinical significance of melatonin level in patients with chronic obstructive pulmonary disease

https://doi.org/10.18093/0869-0189-2019-29-1-7-7-17

Abstract

The objective of this study was to analyze an impact of melatonin on clinical course, cytokine profile and surfactant protein D level in patients with COPD. Methods. The study involved 88 patients (62 men and 26 women) with stable moderate-to-severe COPD (GOLD stages II – IV), the "frequent exacerbator" phenotype (group D), aged 40 to 80 years (mean age, 68.61 ± 0.72 years). The patients were divided into three groups according to COPD stage: 31 patients (22 men and 9 women; mean age, 67.42 ± 1.38 years) with COPD GOLD stage II); 29 patients (19 men and 10 women; mean age, 68.83 ± 1.21 years) with COPD GOLD stage III); and 28 patients (21 men and 7 women; mean age, 69.71 ± 1.09 years) with COPD GOLD stage IV. Clinical and laboratory parameters were assessed at baseline and in 1 year of the follow-up. Results. Severe COPD course with frequent exacerbations, prominent clinical signs and significant impact on quality of life was directly and statistically significantly related to lower melatonin level. This was also associated with different sleep disorders, high-grade chronic systemic inflammation, and lower surfactant protein D (SP-D) level. Conclusion. Lower melatonin level in COPD patients could cause sleep disorders, decrease the antioxidant defense and SP-D level, increase the pro-inflammatory activity and decrease the anti-inflammatory activity.

About the Authors

O. V. Goncharenko
N.N.Burdenko Voronezh State Medical University, Healthcare Ministry of Russia
Russian Federation

Ol’ga V. Goncharenko - Postgraduate student, Department of General Internal Medicine.

ul. Studencheskaya 10, Voronezh, 394622; tel.: (473) 253-11-45.



A. V. Budnevskiy
N.N.Burdenko Voronezh State Medical University, Healthcare Ministry of Russia
Russian Federation

Andrey V. Budnevskiy - Doctor of Medicine, Professor, Head of Department of General Internal Medicine.

ul. Studencheskaya 10, Voronezh, 394622; tel.: (473) 263-81-30.



S. A. Kozhevnikova
N.N.Burdenko Voronezh State Medical University, Healthcare Ministry of Russia
Russian Federation

Svetlana A. Kozhevnikova - Candidate of Medicine, Assistant Lecturer, Department of General Medical Practice (Family Medicine) and Medical Expertise, Institute of Postgraduate Medical Training.

ul. Studencheskaya 10, Voronezh, 394622; tel.: (473) 255-58-76.



E. S. Ovsyannikov
N.N.Burdenko Voronezh State Medical University, Healthcare Ministry of Russia
Russian Federation

Evgeniy S. Ovsyannikov - Candidate of Medicine, Assistant Professor, Associate Professor, Department of General Internal Medicine.

ul. Studencheskaya 10, Voronezh, 394622; tel.: (473) 263-81-30.



References

1. Chuchalin A.G. [Respiratory Medicine: Guideline]. The 2nd Edition. Moscow: Litterra; 2017 (in Russian).

2. Global Initiative for Chronic Obstructive Lung Disease. GOLD 2017. Global strategy for the diagnosis, management, and prevention of COPD. Available at: https://goldcopd.org/gold-2017-global-strategy-diagnosis-management-prevention-copd/

3. Avdeev S.N. [Exacerbation of chronic obstructive pulmonary disease: a choice of antibacterial treatment]. Pul'monologiya. 2014; (6): 65–72. DOI: 10.18093/0869-0189-2014-0-6-65-72 (in Russian).

4. Budhiraja R., Parthasarathy S., Budhiraja P. et al. Insomnia in patients with COPD. Sleep. 2012; 35 (3): 369–375. DOI: 10.5665/sleep.1698.

5. Budnevskiy A.V., Tsvetikova L.N., Ovsyannikov E.S., Goncharenko O.V. [A role of melatonin for occurrence of chronic obstructive pulmonary disease]. Pul'monologiya. 2016; 26 (3): 372–378. DOI: 10.18093/0869-0189-2016-26-3-372-378 (in Russian)

6. Budnevskiy A.V., Ovsyannikov E.S., Rezova N.V., Shkatova Ya.S. [Melatonin and hypertension: a possible role in complex therapy]. Terapevticheskiy arkhiv. 2017; 89 (12): 122–126. DOI: 10.17116/terarkh20178912122-126 (in Russian).

7. Anisimov V.N. Epiphysis, biorhythms and aging. Uspekhi fiziologicheskikh nauk. 2008; 39 (4): 52–76 (in Russian).

8. Hynninen M.J., Pallesen S., Hardie J. et al. Insomnia symptoms, objectively measured sleep, and disease severity in chronic obstructive pulmonary disease outpatients. Sleep Med. 2013; 14 (12): 1328–1333. DOI: 10.1016/j.sleep.2013.08.785.

9. Vozoris N.T., Fischer H.D., Wang X. et al. Benzodiazepine drug use and adverse respiratory outcomes among older adults with COPD. Eur. Respir. J. 2014; 44 (2): 332–340. DOI: 10.1183/09031936.00008014.

10. Tribuntseva L.V., Kozhevnikova S.A., Burlachuk V.T., Prozorova G.G. [An impact of sleep disorders and depression on the course of chronic obstructive pulmonary disease]. Kardiovaskulyarnaya terapiya i profilaktika. 2016; 15 (S): 150–154 (in Russian).

11. Budnevskiy A.V., Ovsyannikov E.S., Labzhaniya N.B. [Chronic obstructive pulmonary disease concurrent with metabolic syndrome: Pathophysiological and clinical features]. Terapevticheskiy arkhiv. 2017; 89 (1): 123–127 (in Russian).

12. Budnevskiy A.V., Ovsyannikov Е.S., Shkatova Y.S. [A relationship between chronic obstructive pulmonary disease, obesity and melatonin level]. Pul'monologiya. 2018; 28 (3): 359–367. DOI: 10.18093/0869-0189-2018-28-3-359-367 (in Russian).

13. Subramanian P., Dakshayani K.B., Pandi-Perumal S.R. et al. 24-hour rhythms in oxidative stress during hepatocarcinogenesis in rats: effect of melatonin or alpha-ketoglutarate. Redox. Rep. 2008; 13 (2): 78–86. DOI: 10.1179/135100008X259178.

14. Hardeland R., Coto-Montes A., Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol. Int. 2003; 20 (6): 921–962.

15. Hardeland R. Melatonin and the electron transport chain. Cell. Mol. Life Sci. 2017; 74 (21): 3883–3896. DOI: 10.1007/s00018-017-2615-9.

16. Esrefoglu M., Gül M., Emre M.H. et al. Protective effect of low dose of melatonin against cholestatic oxidative stress after common bile duct ligation in rats. World J. Gastroenterol. 2005; 11 (13): 1951–1956. DOI: 10.3748/wjg.v11.i13.1951.

17. Djordjevic B., Cvetkovic T., Stoimenov T.J. et al. Oral supplementation with melatonin reduces oxidative damage and concentrations of inducible nitric oxide synthase, VEGF and matrix metalloproteinase 9 in the retina of rats with streptozotocin/nicotinamide induced pre-diabetes. Eur. J. Pharmacol. 2018; 833: 290–297. DOI: 10.1016/j.ejphar.2018.06.011.

18. Maharaj D.S., Limson J.L., Daya S. 6-Hydroxymelatonin converts Fe (III) to Fe (II) and reduces iron-induced lipid peroxidation. Life Sci. 2003; 72 (12): 1367–1375.

19. Cruz A., Tasset I., Ramírez L.M. et al. Effect of melatonin on myocardial oxidative stress induced by experimental obstructive jaundice. Rev. Esp. Enferm. Dig. 2009; 101 (7): 460–463.

20. Adibhatla R.M., Hatcher J.F. Altered lipid metabolism in brain injury and disorders. Subcell. Biochem. 2008; 49: 241–268. DOI: 10.1007/978-1-4020-8831-5_9.

21. Lyamina S.V., Vedenikin T.Yu., Malyshev I.Yu. [Current approach to evaluation of immune response in lung diseases: a role of surfactant protein D]. Sovremennye problemy nauki i obrazovaniya. 2011; 4: 1–10 (in Russian).

22. Roth T. Hypnotic use for insomnia management in chronic obstructive pulmonary disease. Sleep Med. 2009; 10 (1): 19–25. DOI: 10.1016/j.sleep.2008.06.005.

23. Kryger M., Roth T., Wang-Weigand S., Zhang J. The effects of ramelteon on respiration during sleep in subjects with moderate to severe chronic obstructive pulmonary disease. Sleep Breath. 2009; 13 (1): 79–84. DOI: 10.1007/s11325-008-0196-4.

24. Halvani A., Mohsenpour F., Nasiriani K. Evaluation of exogenous melatonin administration in improvement of sleep quality in patients with chronic obstructive pulmonary disease. Tanaffos. 2013; 12 (2): 9–15.

25. Milkowska-Dymanowska J., Bialas A.J., Makowska J. et al. Geroprotectors as a therapeutic strategy for COPD – where are we now? Clin. Interv. Aging. 2017; 2017 (12): 1811–1817. DOI: 10.2147/CIA.S142483.

26. Gumral N., Naziroglu M., Ongel K. et al. Antioxidant enzymes and melatonin levels in patients with bronchial asthma and chronic obstructive pulmonary disease during stable and exacerbation periods. Cell. Biochem. Funct. 2009; 27 (5): 276–283. DOI: 10.1002/cbf.1569.

27. de Matos Cavalcante A.G., de Bruin P.F., de Bruin V.M. et al. Melatonin reduces lung oxidative stress in patients with chronic obstructive pulmonary disease: a randomized, double-blind, placebo-controlled study. J. Pineal. Res. 2012; 53 (3): 238–244. DOI: 10.1111/j.1600-079X.2012.00992.x.

28. Kim G.D., Lee S.E., Kim T.H. et al. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts. J. Pineal. Res. 2012; 52 (3): 356–364. DOI: 10.1111/j.1600-079X.2011.00950.x.

29. Shin I.S., Shin N.R., Park J.W. et al. Melatonin attenuates neutrophil inflammation and mucus secretion in cigarette smoke-induced chronic obstructive pulmonary diseases via the suppression of Erk-Sp1 signaling. J. Pineal. Res. 2015; 58 (1): 50–60. DOI: 10.1111/jpi.12192.

30. Peng Z., Zhang W., Qiao J., He B. Melatonin attenuates airway inflammation via SIRT1 dependent inhibition of NLRP3 inflammasome and IL-1β in rats with COPD. Int. Immunopharmacol. 2018; 62: 23–28. DOI: 10.1016/j.intimp.2018.06.033.

31. Shin N.R., Park J.W., Lee I.C. et al. Melatonin suppresses fibrotic responses induced by cigarette smoke via downregulation of TGF-β1. Oncotarget. 2017; 8 (56): 95692–95703. DOI: 10.18632/oncotarget.21680.

32. Shin I.S., Park J.W., Shin N.R. et al. Melatonin inhibits MUC5AC production via suppression of MAPK signaling in human airway epithelial cells. J. Pineal. Res. 2014; 56 (4): 398–407. DOI: 10.1111/jpi.12127.


Review

For citations:


Goncharenko O.V., Budnevskiy A.V., Kozhevnikova S.A., Ovsyannikov E.S. Clinical significance of melatonin level in patients with chronic obstructive pulmonary disease. PULMONOLOGIYA. 2019;29(1):7-17. (In Russ.) https://doi.org/10.18093/0869-0189-2019-29-1-7-7-17

Views: 958


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)