Preview

PULMONOLOGIYA

Advanced search

Ciliated cell cultures for diagnosis of primary ciliary dyskinesia

https://doi.org/10.18093/0869-0189-2023-33-2-210-215

Abstract

Primary ciliary dyskinesia (PCD) is a hereditary autosomal recessive disease that results in a defect in the ultrastructure of epithelial cilia. To date, there is no single diagnostic test for PCD, so the diagnosis is based on the results of multiple tests, such as DNA diagnostics, assessment of nasal nitric oxide levels, ciliary beat frequency (CBF) in nasal biopsy, ciliary ultrastructure, etc. Diagnosis of PCD can be difficult due to secondary damage to the airway epithelium, leading to undiagnosed or false positive cases.

The aim of this work was to review studies on the cultivation of human nasal epithelial cells and subsequent differentiation into ciliated cells for the diagnosis of PCD.

Conclusion. In vitro ciliogenesis helps to make a correct diagnosis of PCD while avoiding false positives. There are three different methods of ciliogenesis in vitro: the suspension culture method, the ALI culture method, and the organoid culture method. Each method of ciliogenesis has its own advantages and disadvantages. The ALI culture method is the most widely used. It produces a sufficient number of ciliated cells for diagnosis, which can be maintained in culture for a long time. The obtained cultures of nasal epithelial ciliated cells allow to analyze the ultrastructure of cilia, to evaluate CBF and localization of ciliary proteins, which helps in the diagnosis of PCD.

About the Authors

A. G. Demchenko
Federal State Budgetary Scientific Institution “Research Centre for Medical Genetics”, Ministry of Science and Higher Education of the Russian Federation
Russian Federation

Anna G. Demchenko - Researcher, Laboratory of Genome Editing.

Ul. Moskvorechye 1, Moscow, 115522; tel.: (499) 324-35-79


Competing Interests:

The authors did not declare any conflicts of interests



S. A. Smirnikhina
Federal State Budgetary Scientific Institution “Research Centre for Medical Genetics”, Ministry of Science and Higher Education of the Russian Federation
Russian Federation

Svetlana A. Smirnikhina - Candidate of Medicine, Head of the Laboratory of Genome Editing.

Ul. Moskvorechye 1, Moscow, 115522; tel.: (499) 324-35-79


Competing Interests:

The authors did not declare any conflicts of interests



References

1. Kondratyeva E.I., Avdeev, S.N., Mizernitskiy Yu.L. et al. [Primary ciliary dyskinesia: review of the draft clinical guidelines, 2022]. Pul’monologiya. 2022; 32 (4): 517-538. DOI: 10.18093/0869-0189-2022-32-4-517-538 (in Russian).

2. Damseh N., Quercia N., Rumman N. et al. Primary ciliary dyskinesia: mechanisms and management. Appl. Clin. Genet. 2017; 10: 67-74. DOI: 10.2147/TACG.S127129.

3. Hirst R.A., Jackson C.L., Coles J.L. et al. Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid. PLoS One. 2014; 9 (2): e89675. DOI: 10.1371/journal.pone.0089675.

4. Leigh M.W., Horani A., Kinghorn B. et al. Primary ciliary dyskinesia (PCD): a genetic disorder of motile cilia. Transl. Sci. RareDis. 2019; 4 (1-2): 51-75. DOI: 10.3233/TRD-190036.

5. Knowles M.R., Daniels L.A., Davis S.D. et al. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am. J. Respir. Crit. Care Med. 2013; 188 (8): 913-922. DOI: 10.1164/rccm.201301-0059CI.

6. Lucas J.S., Leigh M.W. Diagnosis of primary ciliary dyskinesia: searching for a gold standard. Eur. Respir. J. 2014; 44 (6): 1418-1422. DOI: 10.1183/09031936.00175614.

7. Lucas J.S., Barbato A., Collins S.A. et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 2017; 49 (1): 1601090. DOI: 10.1183/13993003.01090-2016.

8. Jorissen M., Willems T., van der Schueren B. Ciliary function analysis for the diagnosis of primary ciliary dyskinesia: advantages of cilio-genesis in culture. Acta Otolaryngol. 2000; 120 (2): 291-295. DOI: 10.1080/000164800750001116.

9. Pifferi M., Bush A., Montemurro F. et al. Rapid diagnosis of primary ciliary dyskinesia: cell culture and soft computing analysis. Eur. Respir. J. 2013; 41 (4): 960-965. DOI: 10.1183/09031936.00039412.

10. Gamarra F., Bergner A., Stauss E. et al. Rotation frequency of human bronchial and nasal epithelial spheroids as an indicator of mucociliary function. Respiration. 2006; 73 (5): 664-672. DOI: 10.1159/000092672.

11. Willems T., Jorissen M. Sequential monolayer-suspension culture of human airway epithelial cells. J. Cyst. Fibrosis. 2004; 3 (Suppl. 2): 53-54. DOI: 10.1016/j.jcf.2004.05.011.

12. Jorissen M., van der Schueren B., van den Berghe H., Cassiman J.J. The preservation and regeneration of cilia on human nasal epithelial cells cultured in vitro. Arch. Otorhinolaryngol. 1989; 246 (5): 308-314. DOI: 10.1007/BF00463582.

13. Pifferi M., Montemurro F., Cangiotti A.M. et al. Simplified cell culture method for the diagnosis of atypical primary ciliary dyskinesia. Thorax. 2009; 64 (12): 1077-1081. DOI: 10.1136/thx.2008.110940.

14. Marthin J.K., Stevens E.M., Larsen L.A. et al. Patient-specific three-dimensional explant spheroids derived from human nasal airway epithelium: a simple methodological approach for ex vivo studies of primary ciliary dyskinesia. Cilia. 2017; 6: 3. DOI: 10.1186/s13630-017-0049-5.

15. Jorissen M., Bessems A. Normal ciliary beat frequency after cilio-genesis in nasal epithelial cells cultured sequentially as monolayer and in suspension. Acta Otolaryngol. 1995; 115 (1): 66-70. DOI: 10.3109/00016489509133349.

16. Coles J.L., Thompson J., Horton K.L. et al. A Revised protocol for culture of airway epithelial cells as a diagnostic tool for primary ciliary dyskinesia. J. Clin. Med. 2020; 9 (11): 3753. DOI: 10.3390/jcm9113753.

17. Neugebauer P., Endepols H., Mickenhagen A., Walger M. Ciliogen-esis in submersion and suspension cultures of human nasal epithelial cells. Eur. Arch. Otorhinolaryngol. 200; 260 (6): 325-330. DOI: 10.1007/s00405-002-0562-y.

18. Bukowy-Bieryiio Z. Long-term differentiating primary human airway epithelial cell cultures: how far are we? Cell Commun. Signal. 2021; 19 (1): 63. DOI: 10.1186/s12964-021-00740-z.

19. Bukowy-Bieryiio Z., Daca-Roszak P., Jurczak J. et al. In vitro differentiation of ciliated cells in ALI-cultured human airway epithelium - the framework for functional studies on airway differentiation in ciliopathies. Eur. J. Cell Biol. 2022; 101 (1):151189. DOI: 10.1016/j.ejcb.2021.151189.

20. Hong K.U., Reynolds S.D., Watkins S. et al. Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am. J. Pathol. 2004; 164 (2): 577-588. DOI: 10.1016/S0002-9440(10)63147-1.

21. Lee D.D.H., Petris A., Hynds R.E., O’Callaghan C. Ciliated epithelial cell differentiation at air-liquid interface using commercially available culture media. Methods Mol. Biol. 2020; 2109: 275-291. DOI: 10.1007/7651_2019_269.

22. Shankaran A., Prasad K., Chaudhari S. et al. Advances in development and application of human organoids. Biotech. 2021; 11 (6): 257. DOI: 10.1007/s13205-021-02815-7.

23. Rossi R., de Angelis M.L., Xhelili E. et al. Lung cancer organoids: the rough path to personalized medicine. Cancers (Basel). 2022; 14 (15): 3703. DOI: 10.3390/cancers14153703.

24. Lu T., Cao Y., Zhao P. et al. Organoid: a powerful tool to study lung regeneration and disease. Cell Regeneration. 2021; 10 (1): 21. DOI: 10.1186/s13619-021-00082-8.

25. Liu Z., Anderson J.D., Deng L. et al. Human nasal epithelial organoids for therapeutic development in cystic fibrosis. Genes (Basel). 2020; 11 (6): 603. DOI: 10.3390/genes11060603.

26. van der Vaart J., Bottinger L., Geurts M.H. et al. Modelling of primary ciliary dyskinesia using patient-derived airway organoids. EMBO Rep. 2021; 22 (12): e52058. DOI: 10.15252/embr.202052058.

27. Wijesekara P., Yadav P., Perkins L.A. et al. Engineering rotating apical-out airway organoid for assessing respiratory cilia motility. iScience. 2022; 25 (8): 104730. DOI: 10.1016/j.isci.2022.104730.

28. Zheng R., Yang W., Wen Y. et al. Dnah9 mutant mice and organoid models recapitulate the clinical features of patients with PCD and provide an excellent platform for drug screening. Cell Death Dis. 2022; 13 (6): 559. DOI: 10.1038/s41419-022-05010-5.

29. Allan K.M., Wong S.L., Fawcett L.K. et al. Collection, expansion, and differentiation of primary human nasal epithelial cell models for quantification of cilia beat frequency. J. Vis. Exp. 2021; (177): e63090. DOI: 10.3791/63090.

30. Hughes C.S., Postovit L.M., Lajoie G.A. Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics. 2010; 10 (9): 1886-1890. DOI: 10.1002/pmic.200900758.

31. Aisenbrey E.A., Murphy W.L. Synthetic alternatives to Matrigel. Nat. Rev. Mater. 2020; 5 (7): 539-551. DOI: 10.1038/s41578-020-0199-8.

32. Lee S.L., O’Callaghan C., Lau Y.L., Lee C.W.D. Functional analysis and evaluation of respiratory cilia in healthy Chinese children. Respir. Res. 2020; 21 (1): 259. DOI: 10.1186/s12931-020-01506-w.


Supplementary files

Review

For citations:


Demchenko A.G., Smirnikhina S.A. Ciliated cell cultures for diagnosis of primary ciliary dyskinesia. PULMONOLOGIYA. 2023;33(2):210-215. (In Russ.) https://doi.org/10.18093/0869-0189-2023-33-2-210-215

Views: 549


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)