Changes in lung inflation in asthma in patients with osmotic airway hyperresponsiveness
https://doi.org/10.18093/0869-0189-2021-31-6-749-758
Abstract
The scientific literature does not provide enough information on whether bronchial hyperresponsiveness to hypoosmotic stimulus in patients with asthma can lead to more pronounced disturbances of regional lung ventilation.
Aim. to characterize lung inflation in asthma patients with osmotic airway hyperresponsiveness.
Methods. The lung inflation was studied by body plethysmography, as well as by three-dimensional volumetry, planimetry, and multispiral CT densitometry in 24 patients (group 1) with persistent mild asthma and osmotic airway hyperresponsiveness, identified by the bronchoprovocation test with inhalation of distilled water (IDW) (the average ДРБУ1 was —21.1 ± 3.2%). The comparison group (group 2) consisted of 49 patients with no response to IDW (the average ДББУ1 was —3.7 ± 0.5%; p = 0.00001).
Results. Group 1 had lower lung function (FEVj was 83.6 ± 4.5%; FEF50 was 58.1 ± 5.8%) at baseline in comparison with the group 2 (96.7 ± 2.2%, p = 0.0042 and 75.5 ± 2.2%, p = 0.016, respectively) and higher indices of lung inflation at body plethysmography (RV was 153.2 ± 12.5 and 127.5 ± 4.0%, respectively; p = 0,027; RV/TLC was 128.8 ± 5.5 and 109.9 ± 2.8%, respectively; p = 0.015). According to three-dimensional volumetry, the indicators of expiratory lung inflation (526.0 ± 117.8 vox) and average residual inflation of both lungs (13.1 ± 2.6 vox) in group 1 were significantly higher than in group 2 (301.5 ± 55.8 vox, р < 0.05 and 9.1 ± 1.6 vox,р < 0,05, respectively). The patients with osmotic airway hyperresponsiveness also showed higher values of the expiratory area in the middle zone (235.3 ± 29.4 and 149.2 ± 14.9 pix, respectively; p = 0.00 47) and the lower zone (292.3 ± 37.9 and 178.6 ± 18.6 pix, respectively; p = 0.0034) of the lungs.
Conclusion. Asthma patients with osmotic airway hyperresponsiveness have lung hyperinflation with impaired lung ventilation predominantly in the middle and lower zones.
About the Authors
Evgeniya Yu. Аfanas’evaRussian Federation
Postgraduate student, Laboratory of Functional Research of Respiratory System
Ul. Kalinina 22, Blagoveshchensk, 675000; tel.: (909) 819-56-17
Competing Interests:
no
Anna G. Prikhodko
Russian Federation
Doctor of Medicine, Chief Researcher, Laboratory of Functional Research of Respiratory System.
Ul. Kalinina 22, Blagoveshchensk, 675000; tel.: (962) 284-43-90
Competing Interests:
no
Andrey V. Il’in
Russian Federation
Candidate of Medicine, Senior Researcher, Laboratory of Molecular and Translational Research.
Ul. Kalinina 22, Blagoveshchensk, 675000; tel.: (914) 561-69-52
Competing Interests:
no
Juliy M. Perelman
Russian Federation
Doctor of Medicine, Professor, Corresponding Member of Russian Academy of Sciences, Head of Laboratory of Functional Research of Respiratory System.
Ul. Kalinina 22, Blagoveshchensk, 675000; tel.: (4162) 77-28-01
Competing Interests:
no
References
1. Prikhodko A.G., Perelman J.M., Kolosov V.P. [Airway hyperresponsiveness]. Vladivostok: Dal’nauka; 2011 (in Russian).
2. Perel’man Yu.M., Naumov D.E., Prikhod’ko A.G., Kolosov V.P. [Mechanisms and manifestations of osmotic airway hyperresponsiveness]. Vladivostok: Dal’nauka; 2016 (in Russian).
3. Prikhod’ko A.G. [Response of airway to inhalation with distilled water in patients with bronchial asthma and chronic bronchitis]. Pul’monologiya. 2006; (2): 78-82. DOI: 10.18093/0869-0189-2006-2-78-82 (in Russian).
4. Il’in A.V., Perel’man Yu.M., Lenshin A.V., Prikhod’ko A.G. [Application of computer-aided tomography with 3D volumetry in the diagnose of lung function disorders in patients with bronchial asthma]. Byulleten’fiziologiiipatologiidykhaniya 2014; (51): 33—37. Available at: https://cfpd.elpub.ru/jour/article/view/607(in Russian).
5. Il’in A.V., Perel’man Yu.M., Prikhod’ko A.G., Lenshin A.V. [Interrelation of potency and reactivity of small bronchi with lung hyperinflation in patients with bronchial asthma and cold airway hyperresponsiveness]. Dal’nevostochnyy meditsinskiy zhurnal. 2014; (3): 18-22. Available at: http://eport.fesmu.ru/dmj/20143/2014304.aspx (in Russian).
6. Il’in A.V., Perel’man Yu.M., Prikhod’ko A.G., Lenshin A.V. [The changes in lungs inflation in asthmatics depending on the degree of asthma control]. Byulleten’fiziologii i patologii dykhaniya. 2014; (52): 34-40. Available at: https://cfpd.elpub.ru/jour/article/view/631/561 (in Russian).
7. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Updated 2018. Available at: https://ginasthma.org/wp-content/uploads/2018/04/wms-GINA-2018-report-V1.3-002.pdf
8. Miller M.R., Hankinson J., Brusasco V. et al. Standardisation of spirometry. Eur. Respir. J. 2005; 26 (2): 319—338. DOI: 10.1183/09031936.05.00034805.
9. Coates A.L., Wanger J., Cockcroft D.W. et al. ERS technical standard on bronchial challenge testing: general considerations and performance of methacholine challenge tests. Eur. Respir. J. 2017; 49 (5): 1601526. DOI: 10.1183/13993003.01526-2016.
10. Hallstrand T.S., Leuppi J.D., Joos G. et al. ERS technical standard on bronchial challenge testing: pathophysiology and methodology of indirect airway challenge testing. Eur. Respir. J. 2018; 52 (5): 1801033. DOI: 10.1183/13993003.01033-2018.
11. Sterk P.J., Fabbri L.M., Quanjer P.H. et al. Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Eur. Respir. J. 1993; 6 (Suppl. 16): 53—83. DOI: 10.1183/09041950.053s1693.
12. Prikhod’ko A.G. [Respiratory tract response to hypoosmotic stimulus]. Byulleten’fiziologii ipatologii dykhaniya. 2005; (21): 47—52. Available at: https://cyberleninka.ru/article/n/reaktsiya-dyhatelnyh-putey-na-gipoosmolyarnyy-stimul/viewer (in Russian).
13. Wanger J., Clausen J.L., Coates A. et al. Standardisation of the measurement oflung volumes. Eur. Respir. J. 2005; 26 (3): 511-522. DOI: 10.1183/09031936.05.00035005.
14. Il’in A.V., Lenshin A.V., Odireev A.N., Perel’man Yu.M. [New method of X-RAY diagnostics of disturbances of lungs ventilation function by multidetector computed tomography]. Byulletenfiziologii i patologii dykhaniya. 2013; (47): 40-47. Available at: https://cfpd.elpub.ru/jour/article/view/547 (in Russian).
15. Lui J.K., Lutchen K.R. The role of heterogeneity in asthma: a struc-ture-to-function perspective. Clin. Transl. Med. 2017; 6 (1): 29. DOI: 10.1186/s40169-017-0159-0.
16. Dubsky S., Zosky G.R., Perks K. et al. Assessment of airway response distribution and paradoxical airway dilation in mice during metha-choline challenge. J. Appl. Physiol. 2017; 122 (3): 503-510. DOI: 10.1152/japplphysiol.00 476.2016.
17. Plantier L., Pradel A., Delclaux C. Mechanisms of non-specific airway hyperresponsiveness: Methacholine-induced alterations in airway architecture. Rev. Mai. Respir. 2016; 33 (8): 735-743. DOI: 10.1016/j.rmr.2015.10.742.
18. Donovan G.M. Inter-airway structural heterogeneity interacts with dynamic heterogeneity to determine lung function and flow patterns in both asthmatic and control simulated lungs. J. Theor. Biol. 2017; 435: 98-105. DOI: 10.1016/j.jtbi.2017.08.024.
19. Foy B.H., Kay D. A computational comparison of the multiple-breath washout and forced oscillation technique as markers of bronchocon-striction. Respir. Physiol. Neurobiol. 2017; 240: 61-69. DOI: 10.1016/j.resp.2017.02.016.
Review
For citations:
Аfanas’eva E.Yu., Prikhodko A.G., Il’in A.V., Perelman J.M. Changes in lung inflation in asthma in patients with osmotic airway hyperresponsiveness. PULMONOLOGIYA. 2021;31(6):749-758. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-6-749-758