Preview

PULMONOLOGIYA

Advanced search

Importance of antiviral H₂S in treatment protocols for COVID-19

https://doi.org/10.18093/0869-0189-2021-31-5-636-644

Abstract

Aim. To propose a new type of antiviral treatment for COVID-19, pending the rollout of the developed vaccines and bypassing vaccine resistance of the new upcoming mutated virus variants. Aiming for prophylaxis and early therapy, the search focused on small molecules or repurposed, safe, oral and inexpensive drugs, also suitable for low-income countries.

Methods. A search in peer-reviewed literature for preclinical antiviral mechanisms highlighted at last two clinical studies for further detailed clinical analysis: 1) High dose N-acetylcysteine (NAC) was successfully applied in very severe COVID-19-pneumonia; 2) The discovery of serum level H2S (hydrogen sulfide) as a prognostic host factor.

Results. Combining of these two findings resulted in a step-by-step approach with 3 perspectives that describes how H2S works in viral respiratory diseases, how H2S targets at least three vulnerabilities in the SARS-CoV-2 virus; finally, how H2S can be generated and with which drugs. More than 3 dozen successful, clinically well-documented applications have already been found.

Conclusion. By using NAC as the H2S donor, the generated endogenous antiviral H2S reactivates the collapsed innate immunity, providing a therapy regimen for COVID-19. Further randomized controlled trials are warranted, considering antiviral H2S for inclusion in some master trial protocols.

About the Author

Ed. J. van Hezik
Non-profit working group Waterfront at Sea
Netherlands

Ed J. van Hezik, M.D. Senior Consultant Chest Physician

2235TD-10 Valkenburg ZH

tel.: +3 (161) 829-92-09


Competing Interests:

There is no conflict of interest (CI) regarding to this research and manuscript.



References

1. RECOVERY Collaborative Group, Horby P., Lim W.S. et al. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 2021; 384 (8): 693–704. DOI: 10.1056/NEJMoa2021436.

2. Kuy S. et al. Retraction: cardiovascular disease, drug therapy, and mortality in Covid-19. N. Engl. J. Med. 2020; 382 (26): 2582 https://doi.org/10.1056/NEJMc2021225.

3. Moynihan R., Macdonald H., Bero L., Godlee F. Commercial influence and COVID-19. BMJ. 2020; 369: m2456. DOI: 10.1136/bmj.m2456.

4. Boulware D.R., Pullen M.F., Bangdiwala A.S. et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19. N. Engl. J. Med. 2020; 383 (6): 517–525. DOI: 10.1056/NEJMoa2016638.

5. Korber B., Fischer W.M., Gnanakaran S. et al. Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020; 182 (4): 812–827e19. DOI: 10.1016/j.cell.2020.06.043.

6. Fedson D.S. Treating the host response to emerging virus diseases: Lessons learned from sepsis, pneumonia, influenza and Ebola. Ann. Transl. Med. 2016; 4 (21): 421. DOI: 10.21037/atm.2016.11.03.

7. Renieris G., Katrini K., Damoulari C. et al. Serum hydrogen sulfide and outcome association in pneumonia by the SARSCoV- 2 coronavirus. Shock. 2020; 54 (5): 633–637. DOI: 10.1097/SHK.0000000000001562.

8. Wang R. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 2002: 16 (13): 1792–1798. DOI: 10.1096/fj.02-0211hyp.

9. Marutani E., Ichinose F. Emerging pharmacological tools to control hydrogen sulfide signaling in critical illness. Intensive Care Med. Exp. 2020; 8 (1): 5. DOI: https://doi.org/10.1186/s40635-020-0296-4.

10. Li H., Ma Y., Escaffre O. et al. Role of hydrogen sulfide in paramyxovirus infections. J. Virol. 2015: 89 (10): 5557–5568. DOI: 10.1128/jvi.00264-15.

11. Bazhanov N., Escaffre O., Freiberg A. N. et al. Broad-range antiviral activity of hydrogen sulfide against highly pathogenic RNA viruses. Sci. Rep. 2017: 7: 41029. DOI: 10.1038/srep41029.

12. Bazhanov N., Ansar M., Ivanciuc T. et al. Hydrogen sulfide: A novel player in airway development, pathophysiology of respiratory diseases, and antiviral defenses. Am. J. Respir. Cell Mol. Biol. 2017; 57 (4): 403–410. DOI: 10.1165/rcmb.2017-0114TR.

13. Ivanciuc T., Sbrana E., Ansar M. et al. Hydrogen sulfide is an antiviral and antiinflammatory endogenous gasotransmitter in the airways. Role in respiratory syncytial virus infection. Am. J. Respir. Cell Mol. Biol. 2016; 55 (5): 684–696. DOI: 10.1165/rcmb.2015-0385OC.

14. Yang G. H2S as a potential defense against COVID-19? Am. J. Physiol. Cell Physiol. 2020; 319 (2): C244–249. DOI: 10.1152/ajpcell.00187.2020.

15. Evgen'ev M.B., Frenkel A. Possible application of H2S-producing compounds in therapy of coronavirus (COVID-19) infection and pneumonia. Cell Stress Chaperones. 2020; 25 (5): 713–715. DOI: 10.1007/s12192-020-01120-1.

16. Citi V., Martelli A., Brancaleone V. et al. Anti‐inflammatory and antiviral roles of hydrogen sulfide: Rationale for considering H2S donors in COVID‐19 therapy. Br. J. Pharmacol. 2020; 177 (21): 4931–4941. DOI: 10.1111/bph.15230.

17. Zanardo R. C., Brancaleone V., Distrutti E. et al. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 2006; 20 (12): 2118–2120. DOI: 10.1096/fj.06-6270fje.

18. Ezerina D., Takano Y., Hanaoka K. et al. N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulfur production. Cell Chem. Biol. 2018; 25 (4): 447–459e4. DOI: 10.1016/j.chembiol.2018.01.011.

19. Cerda M. M., Pluth M.D. S marks the spot: linking the antioxidant activity of N-acetyl cysteine to H2S and sulfane sulfur species. Cell Chem. Biol. 2018: 25 (4): 353–355. DOI: 10.1016/j.chembiol.2018.04.001.

20. Zhao H., Qu J., Li Q. et al. Taurine supplementation reduces neuroinflammation and protects against white matter injury after intracerebral hemorrhage in rats. Amino Acids. 2018; 50 (3-4): 439–451. DOI: 10.1007/s00726-0172529-8.

21. Di Nicolantonio J.J., O,Keefe J.H., McCarty M.F. Boosting endogenous production of vasoprotective hydrogen sulfide via supplementation with taurine and N-acetylcysteine: a novel way to promote cardiovascular health. Open Heart. 2017; 4 (1): e000600. DOI: 10.1136/openhrt-2017-000600.

22. Zuhra K., Tomé C.S., Masi L. et al. N-acetylcysteine serves as substrate of 3-Mercaptopyruvate sulfurtransferase and stimulates sulfide metabolism in colon cancer cells. Cells. 2019; 8 (8): 828. DOI: 10.3390/cells8080828.

23. Yadav P.K., Vitvitsky V., Carballal S. et al. Thioredoxin regulates human mercaptopyruvate sulfurtransferase at physiologically-relevant concentrations. J. Biol. Chem. 2020; 295 (19): 6299–6311. DOI: 10.1074/jbc.RA120.012616.

24. Sun Q., Wang B., Li Y. et al. Taurine supplementation lowers blood pressure and improves vascular function in prehypertension: randomized, double-blind, placebo-controlled study. Hypertension. 2016; 67 (3): 541–549. DOI: 10.1161/HYPERTENSIONAHA.115.06624.

25. Zaorska E., Tomasova L., Koszelewski D. et al. Hydrogen sulfide in pharmacotherapy, beyond the hydrogen sulfide-donors. Biomolecules. 2020; 10 (2): 323. DOI: 10.3390/biom10020323.

26. Kikkert M. Innate immune evasion by human respiratory RNA viruses. J. Innate Immun. 2020; 12 (1): 4–20. DOI: 10.1159/000503030.

27. Blanco-Melo D., Nilsson-Payant B.E., Liu W.C. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020; 181 (5): 1036–1045.e9. DOI: 10.1016/j.cell.2020.04.026

28. Vardhana S.A., Wolchok J.D. The many faces of the anti-COVID immune response. J. Exp. Med. 2020; 217 (6): e20200678. DOI: 10.1084/jem.20200678.

29. Yang L., Liu S., Liu J. et al. COVID-19: immunopathogenesis and immunotherapeutics. Signal Transduct. Target. Ther. 2020; 5 (1): 128. DOI: 10.1038/s41392-020-00243-2.

30. Miller T.W., Wang E.A., Gould S. et al. Hydrogen sulfide is an endogenous potentiator of T cell activation. J. Biol. Chem. 2012; 287 (6): 4211–4221. DOI: 10.1074/jbc.M111.307819.

31. Thomas T., Stefanoni D., Reisz J.A. et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight. 2020; 5 (14): e140327. DOI: 10.1172/jci.insight.140327.

32. De Rosa S.C., Zaretsky M.D., Dubs J.G. et al. N-acetylcysteine replenishes glutathione in HIV infection. Eur. J. Clin. Invest. 2000; 30 (10): 915–929. DOI: 10.1046/j.1365-2362.2000.00736.x.

33. Dröge W. Cysteine and glutathione deficiency in AIDS patients: a rationale for the treatment with N-acetylcysteine. Pharmacology. 1993; 46 (2): 61–65. DOI: 10.1159/000139029.

34. Stipanuk M.H., Ueki I., Dominy J.E. et al. Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids. 2009; 37 (1): 55–63. DOI: 10.1007/s00726-008-0202-y.

35. da Costa L.S., Outlioua A., Anginot A. et al. RNA viruses promote activation of the NLRP3 inflammasome through cytopathogenic effect-induced potassium efflux. Cell Death Dis. 2019; 10 (5): 346. DOI: 10.1038/s41419-019-1579-0.

36. Castelblanco M., Lugrin J., Ehirchiou D. et al. Hydrogen sulfide inhibits NLRP3 inflammasome activation and reduces cytokine production both in vitro and in a mouse model of inflammation. J. Biol. Chem. 2018; 293 (7): 2546–2557. DOI: 10.1074/jbc.m117.806869.

37. Gattinoni L., Chiumello D., Rossi S. COVID-19 pneumonia: ARDS or not? Crit. Care. 2020; 24 (1): 154. DOI: 10.1186/s13054-020-02880-z.

38. Klok F.A., Kruip M.J.H.A., van der Meer N.J.M. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020; 191: 145–147. DOI: 10.1016/j.thromres.2020.04.013.

39. Wang B., Yee Aw. T., Stokes K.Y. N-acetylcysteine attenuates systemic platelet activation and cerebral vessel thrombosis in diabetes. Redox Biology. 2018, 14, 218–228. DOI: 10.1016/j.redox.2017.09.005.

40. Hamming I., Timens W., Bulthuis M. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004; 203 (2): 631–637. DOI: 10.1002/path.1570.

41. Lin Y., Zeng H., Gao L. et al. Hydrogen sulfide attenuates atherosclerosis in a partially ligated carotid artery mouse model via regulating angiotensin converting enzyme 2 expression. Front. Physiol. 2017; 8: 782. DOI: 10.3389/fphys.2017.00782.

42. van Goor H., van den Born J.C., Hillebrands J.L., Joles, J.A. Hydrogen sulfide in hypertension. Curr. Opin. Nephrol. Hypertens. 2016. 25 (2): 107–113. DOI: 10.1097/MNH.0000000000000206.

43. De Flora S., Balansky R., La Maestra S. Rationale for the use of N-acetylcysteine in both prevention and adjuvant therapy of COVID-19. FASEB J. 2020; 34 (10): 13185–13193. DOI: 10.1096/fj.202001807.

44. Madu I.G., Belouzard S., Whittaker G.R. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion. Virology. 2009; 393 (2): 265–271. DOI: 10.1016/j.virol.2009.07.038.

45. Lai A.L., Millet J.K., Daniel S. et al. The SARS-CoV fusion peptide forms an extended bipartite fusion platform that perturbs membrane order in a calcium-dependent manner. J. Mol. Biol. 2017; 429 (24): 3875–3892. DOI: 10.1016/j.jmb.2017.10.017.

46. Gao Y., Yan L., Huang Y. et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 2020; 368 (6492): 779–782. DOI: 10.1126/science.abb7498.

47. Siddiqi H.K., Mehra M.R. COVID-19 Illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplantat. 2020; 39 (5): 405–407. DOI: 10.1016/j.healun.2020.03.012.

48. de Alencar J.C.G., Moreira C.L., Müller A.D. et al. Double-blind, randomized, placebo-controlled trial with N-acetylcysteine for treatment of severe acute respiratory syndrome caused by coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. 2020; 72 (11): e736–741. DOI: 10.1093/cid/ciaa1443.

49. Li H., Mani S., Wu L. et al. The interaction of estrogen and CSE/ H2S pathway in the development of atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 2017; 312 (3): H406–414. DOI: 10.1152/ajpheart.00245.2016.

50. Jain M., Chandel N.S. Rethinking antioxidants in the intensive care unit. Am. J. Respir. Crit. Care Med. 2013; 188 (11): 1283–1285. DOI: 10.1164/rccm.201307-1380CP.

51. Whiteman M., Gooding K.M., Whatmore J.L. et al. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia. 2010; 53 (8): 1722–1726. DOI: 10.1007/s00125-010-1761-5.

52. Sekhar R.V., Patel S.G., Guthikonda A.P. et al. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am. J. Clin. Nutr. 2011; 94 (3): 847–853. DOI: 10.3945/ajcn.110.003483.

53. Dattilo M. The role of host defences in Covid 19 and treatments thereof. Mol. Med. 2020; 26 (1): 90. DOI: 10.1186/s10020-020-00216-9.

54. Ibrahim H., Perl A., Smith D. et al. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin. Immunol. 2020; 219: 108544. DOI: 10.1016/j.clim.2020.108544.

55. Barbaro R.P., MacLaren G., Boonstra P.S. et al. Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the extracorporeal life support organization registry. Lancet. 2020; 396 (10257): 1071–1078. DOI: 10.1016/S0140-6736(20)32008-0.

56. Gaynitdinova V.V., Avdeev S.N., Merzhoeva Z.M. et al. [N-acetylcysteine as a part of complex treatment of moderate COVID-associated pneumonia]. Pulmonologiya. 2021; 31 (1): 21–29. DOI: 10.18093/0869-0189-2021-31-1-21-29 (in Russian).

57. Horowitz R.I., Freeman P.R., Bruzzese J.J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir. Med. Case Rep. 2020; 30: 101063. DOI: 101063.doi:10.1016/j.rmcr.2020.101063.

58. Amatore D., Celestino I., Brundu S. et al. Glutathione increase by the n-butanoyl glutathione derivative (GSH-C4) inhibits viral replication and induces a predominant Th1 immune profile in old mice infected with influenza virus. FASEB Bioadv. 2019; 1 (5): 296–305. DOI: 10.1096/fba.2018-00066.

59. Puyo C., Kreig D., Saddi V. et al. Case Report: Use of hydroxychloroquine and N-acetylcysteine for treatment of a COVID-19 positive patient. F1000Research. 2020; 9: 491. DOI: 10.12688/f1000research.23995.1.

60. De Flora S., Grassi C., Carati L. Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity with long-term N-acetylcysteine treatment. Eur. Respir. J. 1997; 10 (7): 1535–1541. DOI: 10.1183/09031936.97.10071535.

61. Lai K.Y., Ng W.Y., Osburga Chan P.K. High-dose N-acetylcysteine therapy for novel H1N1 influenza pneumonia. Ann. Intern. Med. 2010; 152 (10): 687–688. DOI: 10.7326/0003-4819-152-10-201005180-00017.

62. Garigliany M.M., Desmecht D.J. N-acetylcysteine lacks universal inhibitory activity against influenza A viruses. J. Negat. Results Biomed. 2011; 10: 5. DOI: 10.1186/1477-5751-10-5.

63. Hortin G.L., Landt M., Powderly W.G. Changes in plasma amino acid concentrations in response to HIV-1 infection. Clin. Chem. 1994; 40 (5): 785–789. DOI: 10.1093/clinchem/40.5.785.

64. de Quay B., Malinverni R., Lauterburg B.H. Glutathione depletion in HIV-infected patients: role of cysteine deficiency and effect of oral N-acetylcysteine. AIDS. 1992; 6 (8): 815–820. Available at: https://journals.lww.com/aidsonline/Abstract/1992/08000/Glutathione_depletion_in_HIV_infected_patients_.8.aspx

65. Poe F.L., Corn J. N-Acetylcysteine: A potential therapeutic agent for SARS-CoV-2. Med. Hypotheses. 2020; 143: 109862. DOI: 10.1016/j.mehy.2020.109862.

66. Olson K.R. Reactive oxygen species or reactive sulfur species: why we should consider the latter. J. Exp. Biol. 2020; 223 (Pt 4): jeb196352. DOI: 10.1242/jeb.196352.

67. van Hezik E.J. Adapted incremental treatment plan in COVID-19 - version nov 2020: poster. DOI: 10.13140/RG.2.2.19955.04643.

68. Innsamlingskontrollen. Drugs for Neglected Diseases initiative (DNDi). Available at: https://www.innsamlingskontrollen.no/organisasjoner/drugs-for-neglegted-diseases-initiative-dndi/

69.


Review

For citations:


van Hezik E. Importance of antiviral H₂S in treatment protocols for COVID-19. PULMONOLOGIYA. 2021;31(5):636-644. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-5-636-644

Views: 1702


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)