Metabolic support of the respiratory burst in blood and sputum neutrophils of patients with community-acquired pneumonia
https://doi.org/10.18093/0869-0189-2019-29-2-167-174
Abstract
About the Authors
Andrey A. SavchenkoRussian Federation
Andrey A. Savchenko, Doctor of Medicine, Professor, Head of Laboratory of Cell Molecular Physiology and Pathology, Krasnoyarsk Federal Research Center of Siberian Department of Russian Academy of Medical Science, Federal Research Institute of Medical Problems of the North, Separate Unit; tel.: (391) 212-52-63
ul. Partizana Zheleznyaka 3G, Krasnoyarsk, 660022
ul. Partizana Zheleznyaka 1, Krasnoyarsk, 660022
Yuriy I. Grinshteyn
Russian Federation
Yuriy I. Grinshteyn, Doctor of Medicine, Professor, Head of Department of Therapy, Institute of Postgraduate Medical Training, V.F.Voyno-Yasenetskiy Krasnoyarsk State Medical University, Healthcare Ministry of Russia; tel.: (391) 242-46-64
ul. Partizana Zheleznyaka 1, Krasnoyarsk, 660022
Anastasiya S. Drobysheva
Russian Federation
Anastasiya S. Drobysheva, pulmonologist, .S.Berson Krasnoyarsk Territorial Interregional teaching Hospital No.20; tel.: (391) 264-29-80
ul. Instrumental’naya 12, Krasnoyarsk, 660123
References
1. Kolosov V.P., Kochegarova E.Yu., Naryshkina S.V. [Community-Acquired Pneumonia: clinical course, prediction of outcomes]. Blagoveshchensk: AGMA; 2012 (in Russian).
2. Chuchalin A.G., ed. [Pulmonology. A National Manual]. Moscow: GEOTAR-Media; 2016 (in Russian).
3. Cataudella E., Giraffa C.M., Di Marca S. et al. Neutrophil-to-lymphocyte ratio: an emerging marker predicting prognosis in elderly adults with community-acquired pneumonia. J. Am. Geriatr. Soc. 2017; 65 (8): 1796–1801. DOI: 10.1111/jgs.14894.
4. Kartal O., Kartal A.T. Value of neutrophil to lymphocyte and platelet to lymphocyte ratios in pneumonia. Bratisl. Lek. Listy. 2017; 118 (9): 513–516. DOI: 10.4149/BLL_2017_099.
5. Parenti A., Indorato B., Paccosi S. Minocycline affects human neutrophil respiratory burst and transendothelial migration. Inflamm. Res. 2017; 66 (2): 107–109. DOI: 10.1007/s00011-016-0999-x.
6. Stålhammar M.E., Douhan Håkansson L., Sindelar R. Bacterial N-formyl peptides reduce PMA- and Escherichia coli-induced neutrophil respiratory burst in term neonates and adults. Scand. J. Immunol. 2017; 85 (5): 365–371. DOI: 10.1111/sji.12537.
7. Vladimirov Yu.A., Proskurnina E.V. [Free radicals and cell chemiluminescence]. Uspekhi biologicheskoy khimii. 2009; 49: 341–388 (in Russian).
8. Beutler B. Innate immunity: an overview. Mol. Immunol. 2004; 40: 845–859. DOI: 10.1016/j.molimm.2003.10.005.
9. Soodaeva S.K., Klimanov I.A., Nikitina L.Yu. Nitrosative and oxidative stresses in respiratory diseases. Pul'monologiya. 2017; 27 (2): 262–273. DOI: 10.18093/0869-0189-2017-27-2-262-273 (in Russian).
10. Savchenko A.A., Zdzitovetskiy D.E., Borisov A.G., Luzan N.A. Chemiluminescent and enzymatic activity of neutrophils in patients with extended purulent peritonitis according to outcomes. Vestnik RAMN. 2014; 69 (5-6): 23–28. DOI: 10.15690/vramn.v69i5-6.1039 (in Russian).
11. Walmsley S.R., Whyte M.K. Neutrophil energetics and oxygen sensing. Blood. 2014; 123 (18): 2753–2754. DOI: 10.1182/blood-2014-03-560409.
12. Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S. et al. [Russian Respiratory Society, Interregional Association on Clinical Microbiology and Antimicrobial Chemotherapy. Clinical Guidelines on Diagnosis, Treatment and Prevention of Severe Community-Acquired Pneumonia in Adults]. Pul'monologiya. 2014; (4): 13–48. DOI: 10.18093/0869-0189-2014-0-4-13-48 (in Russian).
13. Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S. et al. [Clinical Guidelines on Diagnosis, Treatment and Prevention of Severe Community-Acquired Pneumonia in Adults]. Klinicheskaya mikrobiologiya antimikrobnaya khimioterapiya. 2015; 17 (2): 84–126 (in Russian).
14. Dvoretskiy L.I. Community-acquired pneumonia, therapeutist's point of view. Consilium Medicum. 2008; 10 (3): 34–40 (in Russian).
15. Savchenko A.A. [Measurement of activity of NAD(P)-dependent dehydrogenases in neutrophilic granulocytes using the bioluminescent method]. Byulleten' eksperimental'noy biologii i meditsiny. 2015; 159 (5): 656–660. DOI: 10.1007/s10517-015-3049-8 (in Russian).
16. Nguyen G.T., Green E.R., Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH oxidase activation and bacterial resistance. Front. Cell. Infect. Microbiol. 2017; 7: 373. DOI: 10.3389/fcimb.2017.00373.
17. Zhang L., Wu J., Duan X. et al. NADPH oxidase: A potential target for treatment of stroke. Oxid. Med. Cell. Longev. 2016; 2016: 5026984. DOI: 10.1155/2016/5026984.
18. Kőszegi T., Sali N., Raknić M. et al. A novel luminol-based enhanced chemiluminescence antioxidant capacity microplate assay for use in different biological matrices. J. Pharmacol. Toxicol. Methods. 2017; 88 (Pt 2): 153–159. DOI: 10.1016/j.vascn.2017.09.256.
19. Bao Y., Ledderose C., Graf A.F. et al. mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis. J. Cell Biol. 2015; 210 (7): 1153–1164. DOI: 10.1083/jcb.201503066.
20. Milot E., Filep J.G. Regulation of neutrophil survival /apoptosis by Mcl-1. Sci. World J. 2011; 11: 1948–1962. DOI: 10.1100/2011/131539.
21. Lu L., Wang M., Liao X. et al. Manganese influences the expression of fatty acid synthase and malic enzyme in cultured primary chicken hepatocytes. Br. J. Nutr. 2017; 118 (11): 881–888. DOI: 10.1017/S0007114517002987.
22. Cai T., Kuang Y., Zhang C. et al. Glucose-6-phosphate dehydrogenase and NADPH oxidase 4 control STAT3 activity in melanoma cells through a pathway involving reactive oxygen species, c-SRC and SHP2. Am. J. Cancer Res. 2015; 5 (5): 1610–1620.
Review
For citations:
Savchenko A.A., Grinshteyn Yu.I., Drobysheva A.S. Metabolic support of the respiratory burst in blood and sputum neutrophils of patients with community-acquired pneumonia. PULMONOLOGIYA. 2019;29(2):167-174. (In Russ.) https://doi.org/10.18093/0869-0189-2019-29-2-167-174