Коррекция эндотелиальной дисфункции у больных внебольничной пневмонией с помощью низкоинтенсивного лазерного облучения крови

Н.М.Бурдули, А.А.Габуева

ГБОУ ВПО "Северо-Осетинская государственная медицинская академия" Минздрава России: 362019, Республика Северная Осетия — Алания, Владикавказ, ул. Пушкинская, 40

Резюме

Цель. Изучение влияния низкоинтенсивного лазерного излучения на уровень оксида азота (NO) в крови у больных внебольничной пневмонией (ВП). *Материалы и методы.* Больные были распределены на 2 группы: контрольную, пациенты которой получали только медикаментозную терапию и основную, где дополнительно проводились курсы внутривенного лазерного облучения крови (ВЛОК) по методике ВЛОК-405. Уровень NO определялся по сумме его конечных метаболитов при помощи набора реагентов для иммуноферментного анализа. *Результаты.* При анализе полученных данных выявлено достоверное улучшение показателей NO как при исходно повышенном, так при пониженном содержании его метаболитов у больных, получавших дополнительно лазерную терапию. *Заключение.* Включение ВЛОК в комплексную терапию больных ВП сопровождается нормализацией показателей функции эндотелия.

Ключевые слова: эндотелиальная дисфункция, метаболиты NO, внебольничная пневмония.

DOI: 10.18093/0869-0189-2015-25-2-196-198

Correction of endothelial dysfunction in patients with community-acquired pneumonia using low-level laser blood irradiation

N.M.Burduli, A.A.Gabueva

State Institution "Northern Ossetian State Medical Academy", Healthcare Ministry of Russia: 40, Pushkinskaya str., Vladikavkaz, 362019, The Republic of North Ossetia-Alania, Russia

Summary

The aim of the study was to investigate effects of low-level laser blood irradiation on nitric oxide (NO) in patients with community-acquired pneumonia (CAP). Methods. The patients were divided into two groups: the control group receiving medication treatment only and the study group additionally receiving low-level laser blood irradiation (LLBI). NO was detected as a sum of its end products using immunoenzyme assay. Results. A significant improvement in NO level after LLBI was seen both in patients with baseline increased or decreased concentration of NO metabolites. Conclusion. LLBI in patients with community-acquired pneumonia was accompanied by improvement of endothelial function.

Key words: endothelial dysfunction, nitric oxide metabolites, community-acquired pneumonia.

До настоящего времени внебольничная пневмония (ВП) является одним из наиболее распространенных заболеваний и занимает 4-е место в структуре летальных исходов. Ежегодно из 1,5 млн заболевших погибают > 40 тыс. человек [1, 2].

В последние годы повышенное внимание уделяется роли сосудистого эндотелия в патогенезе многих заболеваний. Показано, что эндотелий сосудов не просто образует барьер между кровью и гладкомышечными клетками сосудов, но и обеспечивает динамическое равновесие сосудосуживающих и сосудорасширяющих факторов, регулирует процессы гемостаза, влияет на сосудистую проницаемость и участвует в иммунном ответе организма [3, 4].

По данным литературы, у больных ВП отмечается дисфункция эндотелия, которая выражается в нарушении равновесия противоположно действующих вазодилатирующих, констрикторных, антикоагулянтных и прокоагулянтных и т. п. факторов [5].

Принимая во внимание патогенетическое значение дисфункция эндотелия, а также все возрастающие ежегодные экономические затраты на терапию ВП, необходимо совершенствование уже имеющих-

ся и поиск новых методов лечения $B\Pi$, одним из которых является низкоинтенсивная лазерная терапия, в частности внутривенное лазерное облучение крови ($B\Pi OK$).

Лечению ВП с помощью лазерной терапии посвящено ограниченное число работ. Имеются сведения о том, что применение ВЛОК в терапии больных ВП способствует коррекции реологических свойств эритроцитов, показателей гемокоагуляции [6]. Однако несмотря на эти данные, остаются неизученными вопросы применения ВЛОК в комплексном лечении больных ВП, а именно — влияние лазерной терапии на функцию эндотелия.

Целью исследования явилось изучение влияния ВЛОК на динамику показателей эндотелиальной дисфункции у больных ВП.

Материалы и методы

Под наблюдением находились больные ВП (n = 100: 61 (61%) мужчина, 39 (39%) женщин; средний возраст — 54 ± 14 года) в возрасте от 19 до 75 лет, госпитализированные в 1-е терапевтическое отделение

196

Владикавказского МБУЗ "Клиническая больница скорой медицинской помощи" на 3-5-е сутки от начала заболевания, не принимавшие антибактериальные препараты на догоспитальном этапе. Все больные случайным методом были распределены в 2 группы: контрольную (n=30) и основную (n=70), сопоставимые по возрасту, полу, тяжести состояния, показателям функции внешнего дыхания, центральной и периферической гемодинамики.

Критериями при установлении диагноза ВП согласно рекомендациям Межрегиональной ассоциации по клинической микробиологии и антимикробной химиотерапии (МАКМАХ) [2] являлись: наличие жалоб на повышение температуры тела; кашель с отделением мокроты; боль в грудной клетке, связанная с дыханием или кашлем; физикальные данные — показатели лабораторных методов исследования, свойственных данной патологии; а также инфильтративные изменения на рентгенограмме.

Медикаментозная терапия в соответствии со стандартом лечения ВП проводилась всем больным в течение 10-14 дней. Антибактериальная терапия назначалась эмпирически. В качестве антибактериальных препаратов чаще всего использовались β -лактамы и макролиды.

Дополнительно к традиционной терапии пациентам основной группы назначался курс ВЛОК при использовании аппарата "Матрикс ВЛОК" ("Матрикс", Россия). Длина волны составляла 0,405 мкм, выходная мощность на торце магистрального световода — 1 мВт. Лазерное облучение проводилось в течение 5—7 мин в непрерывном режиме излучения, курс лечения составлял 7 ежедневных процедур. Обследование больных проводилось утром в 1—2-й день госпитализации и через 14 дней после лечения.

Эндотелиальная дисфункция определялась по содержанию стабильных метаболитов оксида азота (NO) в сыворотке крови с помощью набора для иммуноферментного анализа крови (R&D Systems Inc., США).

Полученные данные обрабатывались согласно общепринятым критериям вариационно-статисти-

ческого анализа с вычислением средних величин (M) и ошибки среднего (m) с помощью пакета компьютерных программ $Microsoft\ Excel\ 2010$. Для оценки статистической значимости различий средних величин в случаях 2 выборок использовался t-критерий (критерий Стьюдента). Различия считались достоверными при вероятности ошибки p < 0.05.

Результаты и обсуждение

По результатам исследования были выявлены разнонаправленные отклонения уровня метаболитов NO у больных ВП по сравнению с группой здоровых в сторону как повышения, так и понижения, в соответствии с чем все пациенты были разделены на группы с пониженным (n=33), нормальным (n=13) и повышенным (n=54) содержанием метаболитов NO.

Динамика показателей метаболитов NO представлена в таблице.

В таблице показано, что у больных основной группы с исходно пониженной продукцией NO после лечения отмечалось достоверное повышение уровня его метаболитов, которые достигли показателей нормы, составив: для $NO_x-36,2\pm1,4$ мкмоль / л (p<0,01); нитритов $-7,7\pm1,7$ мкмоль / л (p<0,05); нитратов $-29,4\pm3,1$ мкмоль / л (p<0,05). В контрольной группе с исходно пониженной продукцией NO после лечения отмечалось статистически недостоверное повышение уровня метаболитов NO, не достигшее значений нормы.

В группе больных с исходно повышенным содержанием NO, получавших только медикаментозную терапию, после лечения отмечалась тенденция к снижению NO_x с $54,3\pm2,3$ до $48\pm2,1$ мкмоль / л; нитратов — с $40\pm3,7$ до $36\pm4,2$ мкмоль / л; нитритов — с $14,3\pm1,6$ до $13,2\pm1,4$ мкмоль / л, что оказалось статистически незначимым и не достигло показателей нормы. У получавших сеансы ВЛОК (основная группа) после лечения отмечалось статистически достоверное снижение метаболитов NO, которое достигло нормальных показателей: NO_x — с $53,3\pm1,8$ до

Таблица Динамика показателей метаболитов NO у больных ВП Table Change in nitric oxide metabolites in patients with CAP

Группа пациентов	Содержание NO					
	повышенное		нормальное		пониженное	
	до лечения	после лечения	до лечения	после лечения	до лечения	после лечения
Здоровые	NO ₂ , 7,8 + 2,1 мкмоль / л					
Основная	14,8 ± 1,5##	8,1 ± 1,3**	7,7 ± 1,4	7,8 ± 1,5	3,52 ± 1,02#	7,7 ± 1,7*
Контрольная	14,3 ± 1,6#	13,2 ± 1,4	7,68 ± 1,50	7,72 ± 1,4	4,15 ± 0,70##	5,9 ± 1,6
Здоровые	$NO_3, 29,6 \pm 3,2$ мкмоль / л					
Основная	39,7 ± 3,5#	29,2 ± 3,6*	$28,0 \pm 4,7$	29,1 ± 5,0	20,1 ± 3,4#	29,4 ± 3,1*
Контрольная	40,0 ± 3,7#	$36,0 \pm 4,2$	$27,8 \pm 4,3$	28,3 ± 4,2	20,0 ± 3,5#	22,1 ± 3,3
Здоровые	NO _x , 37,4 ± 3,6 мкмоль / л					
Основная	53,3 ± 1,8###	38,7 ± 2,2***	36,1 ± 3,1	$38,0 \pm 2,4$	24,6 ± 2,8##	36,2 ± 1,4**
Контрольная	54,3 ± 2,3***	48,8 ± 2,1	$36,4 \pm 2,3$	37,5 ± 2,3	25,2 ± 2,5##	27,5 ± 2,7

Примечание: различия до и после лечения в пределах 1 группы: $^+$ – p < 0,05; *** – p < 0,01; **** – p < 0,001; различия с группой здоровых: * – p < 0,05; *** – p < 0,001: Motes: * – p < 0.05; *** – p < 0.001; *** – p < 0.001: difference between baseline and post-treatment parameters within a group; * – p < 0.05; *** – p < 0.01; **** – p < 0.001 – difference between patients and healthy subjects.

http://journal.pulmonology.ru

 $38,7\pm2,2$ мкмоль / л (p<0,001); нитратов — с $39,7\pm3,5$ до $29,2\pm3,6$ мкмоль / л (p<0,05); нитритов — с $14,8\pm1,5$ до $8,1\pm1,3$ мкмоль / л (p<0,01).

У больных обеих групп с исходно нормальным содержанием метаболитов NO после лечения достоверных изменений не отмечено. Известно, что негативное действие NO начинает проявляться при резких либо снижении, либо возрастании его суммарного количества, приводя к функциональному и структурному повреждению органа [7].

По результатам исследования у большинства пациентов выявлено повышенное содержание метаболитов NO, что обусловлено увеличением синтеза NO за счет индуцибельной NO-синтазы, которая, как известно, активируется при инфекциях. Снижение синтеза NO обычно связано с нарушением экспрессии eNOS, понижением доступности запасов L-аргинина для эндотелиальной NOS, ускоренным метаболизмом NO (при повышенном образовании свободных радикалов) или при комбинации указанных факторов [8].

С возрастом в большинстве клеток происходит угнетение синтеза NO, что является одним из физиологических механизмов старения организма и обусловлено разрушительным воздействием на эндотелий повышенного кровяного давления и увеличенных концентраций холестерина, глюкозы, гомоцистеина, продуктов воспалительной реакции и компонентов табачного дыма [8].

Заключение

Таким образом, по результатам данного исследования установлено, что ВП сопровождается разнонаправленным изменением NO-продуцирующей функции эндотелия. При стандартной медикаментозной терапии больных ВП не наблюдалось достоверного улучшения содержания в плазме крови стабильных метаболитов NO, в то время как в группе дополнительно получавших сеансы ВЛОК отмечалась достоверная нормализация уровня NO при исходно как повышенном, так и пониженном содержании NO_x, что свидетельствует о корригирующем действии ВЛОК на функциональное состояние эндотелия.

Литература

- 1. Чучалин А.Г. Синопальников А.И. Козлов Р.С. и др. Внебольничные пневмонии: классификация, патогенез, этиология, эпидемиология, лабораторная диагностика на современном этапе. М.; 2013.
- 2. Чучалин А.Г., Синопальников А.И., Козлов Р.С. и др. Внебольничная пневмония у взрослых: практические рекомендации по диагностике, лечению и профилактике. М., ГЭОТАР-Медиа; 2010.
- Chetta A., Zanini A., Olivieri D. Therapeutic approach to vascular remodelling in asthma. *Pulm. Pharmacol. Ther.* 2007; 20: 1–8.
- 4. Zanini A., Chetta A., Imperatori A. S. et al. The role of the bronchial microvasculature in the airway remodelling in asthma and COPD. *Respir. Res.* 2010; 11: 132.
- 5. Покровский М.В., Покровская Т.Г., Кочкаров В.И. и др. Эндотелиопротективные эффекты L-аргинина

- при экспериментальном моделировании дефицита оксида азота. Экспериментальная и клиническая фармакология. 2008; 71 (2): 29—31.
- 6. Бурдули Н. М., Пилиева Н. Г. Изменение состояния микроциркуляторного русла у больных внебольничной пневмонией и возможности их коррекции. Владикав-казский медико-биологический вестник. 2007; VII (13): 218–221.
- 7. Гречушников В.Б., Гречушникова Д.В. Биологическая роль оксида азота как медиатора воспаления в гастродуоденальной патологий, ассоциированной с Helicobacter pylori. *Лечебное дело.* 2013; 2: 46—50.
- 8. Малахов В.А., Завгородняя А.Н., Лычко В.С. и др. Проблема оксида азота в неврологии. Харьков: *СумДПУ ім. А.С.Макаренка*; 2009.

Поступила 17.11.14

УДК 616.24-002-085.849.19.032.018.5

References

- Chuchalin A.G. Sinopal'nikov A.I. Kozlov R.S. et al. Community-acquired pneumonia: current classification, pathogenesis, etiology, and laboratory diagnosis. Moscow; 2013 (in Russian).
- 2. Chuchalin A.G., Sinopal'nikov A.I. Community-acquired pneumonia in adults: guidelines on diagnosis, treatment and prevention. Moscow, *GEOTAR-Media*; 2010 (in Russian).
- Chetta A., Zanini A., Olivieri D. Therapeutic approach to vascular remodelling in asthma. *Pulm. Pharmacol. Ther.* 2007; 20: 1–8.
- 4. Zanini A., Chetta A., Imperatori A. S. et al. The role of the bronchial microvasculature in the airway remodelling in asthma and COPD. *Respir. Res.* 2010; 11: 132.
- Pokrovskiy M.V., Pokrovskaya T.G., Kochkarov V.I. et al. Endothelium-protective properties of L-arginin in experimental modeling of nitric oxide deficiency. *Eksperimental'naya i klinicheskaya farmakologiya*. 2008; 71 (2): 29–31 (in Russian).
- Burduli N. M., Pilieva N. Microcirculation change in patients with community-acquired pneumonia and treatment. Vladikavkazskiy mediko-biologicheskiy vestnik. 2007; VII (13): 218–221 (in Russian).
- Grechushnikov V.B., Grechushnikova D.V. Biological role
 of nitric oxide as a pro-inflammatory mediator in gastroduodenal disease associated with Helicobacter pylori. *Lechebnoe delo.* 2013; 2: 46–50 (in Russian).
- Malakhov V.A., Zavgorodnyaya A.N., Lychko V.S. et al. Nitric oxide in neurology. Khar'kov: SumDPU im. A.S.Makarenka; 2009 (in Russian).

Received Nov 17, 2014 UDC 616.24-002-085.849.19.032.018.5

Информация об авторах

Бурдули Николай Михайлович – д. м. н., профессор, зав. кафедрой внутренних болезней № 5 ГБОУ ВПО "Северо-Осетинская государственная медицинская академия" Минздрава России; тел.: (8672) 76-86-49, e-mail: burduli@yandex.ru

Габуева Алла Александровна – аспирант кафедры внутренних болезней № 5, ГБОУ ВПО "Северо-Осетинская государственная медицинская академия" Минздрава России; тел.: (8672) 76-86-49; e-mail: gabueva.alla.a@mail.ru

Author information

Burduli Nikolay Mikhaylovich, MD, Professor, Head of the 5th Department of Internal Medicine, State Institution "Northern Ossetian State Medical Academy", Healthcare Ministry of Russia; tel.: (8672) 76-86-49, e-mail: burduli@yandex.ru

Gabueva Alla Aleksandrovna, PhD student at the 5th Department of Internal Medicine, State Institution "Northern Ossetian State Medical Academy", Healthcare Ministry of Russia; tel.: (8672) 76-86-49; e-mail: gabueva.alla.a @mail.ru

 198