Монооксид углерода в выдыхаемом воздухе как маркер ацидоза у спортсменов

Е.В.Бабарсков, Л.В.Шогенова, З.Р.Айсанов, А.В. Черняк, А.Г. Чучалин

ФГБУ "НИИ пульмонологии" ФМБА России: Москва, ул. 11-я Парковая, 32, корп. 4

Резюме

Скорость диссоциации карбоксигемоглобина сильно зависит от кислотно-основного состяния среды (эффект Бора). Поэтому концентрация монооксида углерода (CO) в выдыхаемом воздухе увеличивается из-за возрастания содержания лактата в крови в результате интенсивной физической нагрузки (VOM). Исследовалась зависимость концентрации CO в выдыхаемом воздухе от содержания лактата в крови после VOM. Концентрация VOM измерялась при помощи прибора VOM в выдыхаемом воздухе от содержания лактата в крови после VOM в концентрация VOM измерялась при помощи прибора VOM в выдыхаемом воздухе от содержания лактата в крови после VOM в выдыхаемом воздухе от содержания лактата в крови после VOM в выдыхаемом воздухе от содержания лактата в крови после VOM в выдыхаемом воздухе от содержания VOM в выдыхаемом воздухе от VOM в выдыхаемом воздухе VOM в выдыхаемом воздухе от VOM в выдыхаемом воздухе VOM в выдыхаемом

Ключевые слова: монооксид углерода, карбоксигемоглобин, лактат, анаэробный порог, физическая нагрузка.

Exhaled carbon monoxide (CO) as blood acidity marker in sportsmen

E.V.Babarskov, L.V.Shogenova, Z.R.Aysanov, A.V.Chernyak, A.G.Chuchalin

Federal Institution "Pulmonology Research Institute", Federal Medical and Biological Agency of Russia; Moscow, Russia

Summary

Aim. Carboxyhemoglobin dissociation rate strongly depends on the blood acidity (Bohr's effect). Therefore, CO concentration in the exhaled air increases as a result of lactate production after high-intensity exercise. We studied a relationship between CO concentration in the exhaled air and lactate concentration in the blood after high-intensity exercise in athletes. *Methods*. CO concentration was measured by Smokerlyzer® (Bedfont Scientific Ltd, GB) with previous breath hold; lactate concentration was measured by Accutrend® Lactate (Roche Diagnosics GmbH, Germany). *Results*. Nine elite cyclists were involved, mean (\pm *SD*) age, 25.0 \pm 2.8 years; mean height, 175.0 \pm 4.5 cm; mean weight, 76.5 \pm 5.8 kg; the maximal oxygen uptake, 65.6 \pm 4.5 ml / min / kg before and after cycle-race training. CO concentration ratio was significantly related to lactate concentration. After the training, there were 3.5-fold increase in lactate concentration (from 2 to 7 mmol / L) and 2.5-fold increase in CO concentration (from 3 to 10 ppm). *Conclusion*. Our findings provide a basis for development of novel non-invasive express methods for anaerobic threshold detection and could be useful in elite athletes training, fitness and aerobics.

Key words: carbon monoxide, carboxyhemoglobin, lactate, anaerobic threshold, exercise.

Известно, что ≥ 85 % монооксида углерода (СО) в человеческом организме находится в виде карбоксигемоглобина (СОНь) крови [1]. СОНь образуется в как результате вдыхания СО с атмосферным воздухом, так и при биохимических реакциях, проходящих в организме с выделением эндогенного СО. Эндогенный СО является продуктом катаболизма гемсодержащих соединений (гемоглобин, миоглобин и т. п.). Реакция проходит в присутствии фермента гемоксигеназы-1 главным образом в печени, селезенке и костном мозге.

В норме в покое эндогенная продукция СО составляет ≈ 7 мкл / мин [2], но может повышаться в несколько раз при различных заболеваниях (гемолитическая анемия, гепатит и т. п.) [3–5]. Образующийся таким образом СО выводится из организма преимущественно через легкие. Установлено соотношение между концентрацией СОНЬ в крови и рав-

новесной концентрацией (РК) (время задержки дыхания до 20 с) СО в выдыхаемом воздухе [6, 7]. Показано, что при увеличении содержания СОНь на 1 % РК возрастает примерно на 5,6 ppm, т. е. при содержании СОНь в крови здорового некурящего человека 0,3—1,0 %, концентрация СО в выдыхаемом воздухе будет составлять 2—6 ppm.

В экспериментальном исследовании [8] неожиданно обнаружено, что в результате интенсивной физической нагрузки (ИФН) на велоэргометре (175 Вт, 5 мин), скорость выделения СО с выдыхаемым воздухом резко увеличилась практически в 2,5 раза (до 1,4 мкмоль / мин). Одновременно установлено, что концентрация лактата в крови вследствие перехода через анаэробный порог также значительно возросла примерно в 4,5 раза (до 6,8 ммоль / л), а после окончания ИФН падала практически синхронно со снижением скорости выделения СО (см. рисунок).

http://journal.pulmonology.ru 73

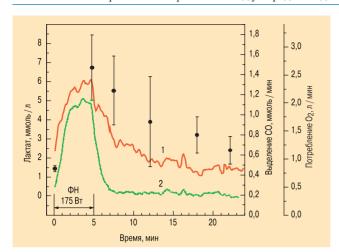


Рисунок. Динамика выделения СО (красная кривая), потребления O_2 (зеленая кривая) и концентрации лактата (•), обусловленная физической нагрузкой (175 Вт, 5 мин) [8]

Целью настоящего исследования было установление зависимости РК СО в выдыхаемом воздухе от концентрации лактата в крови в результате ИФН.

Материалы и методы

Проведены измерения концентрации СО в выдыхаемом воздухе и содержания лактата в крови у элитных спортсменов-велосипедистов (мастеров спорта) (n=9; средний возраст $-25,0\pm2,8$ года; рост $-176,0\pm4,5$ см; масса тела $-76,5\pm5,8$ кг; МПК $-65,6\pm4,5$ мл / мин / кг). Исследования проведены в течение 2 разных дней плановых сборов до и после тренировочных гонок на велотреке. Концентрация СО в выдыхаемом воздухе измерялась при помощи портативного электрохимического анализатора *Smokerlyzer*® (*Bedfont Scientific Ltd.*, Великобритания; эксклюзивный представитель в России -3AO "Инфомед") с предварительной задержкой дыхания, а лактат измерялся при помощи портативного анализатора *Accutrend*® *Lactate* (*Roche Diagnostics*, Германия).

Результаты и обсуждение

Установлено, что в результате ИФН содержание лактата в крови возрастало в среднем в 3,5 раза, при этом концентрация СО в выдыхаемом воздухе увеличивалась в 2,5 раза (табл. 1, 2).

Наблюдаемое явление можно объяснить 2 принципиально разными причинами: во-первых, предположить, что при ИФН резко ускоряются процессы гемолиза эритроцитов и миолиза миоцитов в работающих мышцах, в результате чего значительно (примерно 2 раза), повышается концентрация СОНЬ в крови. Однако такое объяснение противоречит результатам экспериментальных исследований [9], в которых установлено, что после 20 мин ИФН на велоэргометре на уровне 70 % МПК у здоровых добровольцев скорость эндогенного образования СО снижалась с 14,4 до 10,5 мкмоль СО на 1 моль общего гема в организме в день. Обнаружено также заметное (≈ 20 %) падение концентрации СОНЬ в крови,

которое объясняется перераспределением СО между гемоглобином и миоглобином, обусловленным снижением напряжения кислорода в интенсивно работающих мышцах. Перераспределение СО между 2 буферными системами подтверждается и в других работах [10]. К сожалению, в работе [9] не отмечен другой важный механизм снижения концентрации СОНЬ в крови — выделение СО с выдыхаемым воздухом, скорость которого резко возрастает в процессе ИФН.

Альтернативным объяснением наблюдаемого явления можно полагать сдвиг кислотно-основного состояния крови при ИФН, превышающей анаэробный порог из-за резкого роста концентрации лактата в крови, значительного снижения рН и сдвига кривой диссоциации СОНь вправо (эффект Бора). Проведем анализ основных факторов, влияющих на скорость диссоциации СОНь в данных условиях. Очевидно это рН крови, температура и концентра-

Таблица 1 Значения концентраций СО и лактата до и после ИФН

Спортсмен, №	Концентрация до и после ИФН				
	CO, ppm 18.05.13	лактат, ммоль / л 18.05.13	CO, ppm 21.05.13	лактат, ммоль / л 21.05.13	
1	4; 7	1,48; 4,20	4; 10	1,15; 5,2	
2	3; 9	3,62; 4,31	4; 11	1,25; 4,38	
3	2; 6	1,57; 6,04	3; 10	1,17; 5,02	
4	4; 8	1,29; 2,68	4; 12	1,05; 6,34	
5	2; 5	1,48; 4,57	3; 9	1,45; 4,85	
6	9; 19	1,78; 3,86	4; 8	1,81; 4,98	
7	2; 7	2,45; 8,18	5; 10	2,71; 6,12	
8	5; 15	4,02; 5,61	4; 10	3,15; 5,87	
9	5; 9	1,77; 9,73	7; 15	1,24; 10,54	

Таблица 2 Отношение концентрации СО и лактата после ИФН к их исходным значениям

Спортсмен, №	Отношение концентрации СО и лактата до и после ИФН				
	CO	лактат	CO	лактат	
	18.05.13	18.05.13	21.05.13	21.05.13	
1	1,75	2,84	2,50	4,52	
2	3,00	1,19	2,75	3,50	
3	3,00	3,85	3,33	4,29	
4	2,00	2,08	3,00	6,04	
5	2,50	3,09	3,00	3,34	
6	2,11	2,17	2,00	2,75	
7	3,50	3,34	2,00	2,26	
8	3,00	1,40	2,50	1,86	
9	1,80	5,50	2,14	8,50	
С реднее $\pm \sigma$	$2,52\pm0,60$	2,83 ± 1,26	$2,58 \pm 0,45$	4,12 ± 1,96	

74 Пульмонология 5'2014

ция 2,3-дифосфоглицерата (2,3-DPG), который определяющим образом влияет на скорость диссоциации оксигемоглобина.

В экспериментах *in vitro* установлено, что наиболее сильно на скорость диссоциации СОНЬ влияет рН [11]. Так, при изменении рН от 7,5 до 7,0 константа скорости диссоциации возрастает от 0,0055 до 0,0090 с⁻¹, т. е. в 1,64 раза.

Зависимость скорости диссоциации от температуры можно оценить по формуле Аррениуса:

$$\ln \frac{J_{T2}}{J_{T1}} = \frac{A}{R} \cdot \left(\frac{1}{T_1} - \frac{1}{T_2} \right) ,$$

где: J_{T1} , J_{T2} — скорость диссоциации СОНь при температуре T_1 , T_2 соответственно; R = 8,31 Дж / моль / К (универсальная газовая постоянная); A = 89 541,82 Дж / моль — энергия активации [11].

В соответствии с данными [12, 13], при различных видах ИФН внутренняя температура тела (core body temperature) изменяется не более чем на 2 °C, оставаясь в пределах 38–40 °C. С учетом принятых значений основных определяющих параметров можно заключить, что скорость диссоциации СОНЬ в зависимости от данного фактора может увеличиться в $\approx 1,25$ раза.

Таким образом, с учетом 2 рассмотренных факторов объясняется увеличение скорости диссоциации СОНь в результате ИФН в 2,1 раза, что сопоставимо с экспериментально наблюдаемым увеличением РК СО в выдыхаемом воздухе.

В отличие от оксигемоглобина, 20-кратное превышение концентрации 2,3-DPG по отношению к содержанию СОНь не приводит к сколь-нибудь заметному увеличению скорости его диссоциации [11]. Более того, показано, что после 1 ч ИФН (70 % МПК) на велоэргометре концентрация 2,3-DPG в крови у здоровых добровольцев достоверно не увеличивалась [14].

В результате основным фактором, влияющим на скорость диссоциации СОНь, следует считать рН крови. Меньшее значение имеет температура тела. Поскольку рН и температура должны коррелировать с интенсивностью Φ H, то можно заключить, что они будут коррелировать и между собой, и с содержанием лактата в крови.

Показано, что равновесие между содержанием СО в плазме крови и гемоглобином эритроцитов устанавливается намного быстрее, чем между гемоглобином и альвеолярным воздухом [7]. Следовательно РК СО в выдыхаемом воздухе (\widetilde{C}), определяемая концентрацией СО в плазме, будет практически мгновенно отражать изменение скорости диссоциации СОНЬ. Так как главным фактором, влияющим на скорость диссоциации, является pH, то справедливо соотношение:

$$\widetilde{C} = K(pH) \cdot C_{COHb}$$
,

где: K(pH) — коэффициент пропорциональности как функция от pH; C_{COHb} — концентрация СОНь в крови.

Положим, что до ФН

$$pH = pH_0$$
, $K(pH_0) = K_0$, $\widetilde{C} = \widetilde{C}_0$,

т. е. имеет место соотношение:

$$C_0 = K_0 \cdot C_{COHb}$$
.

Если пренебречь изменением концентрации COHb в процессе Φ H, но учесть изменение pH, то будет справедливо следующее соотношение:

$$\widetilde{C} = K(pH) \cdot C_{COHb}$$

ипи

$$\frac{C}{\widetilde{C}_0} = \frac{K(pH)}{K_0} \ .$$

Полагая, что после ИФН pH определяется главным образом концентрацией лактата ($C_{\mathit{ЛАК}}$), получается соотношение:

$$\frac{\widetilde{C}}{\widetilde{C}_0} = \frac{K(C_{JAK})}{K_0}.$$

Таким образом, показана принципиальная возможность построения калибровочной зависимости отношения РК СО в выдыхаемом воздухе от концентрации лактата в крови.

Проведены анализ экспериментальных данных работы [8], а также оценка величины падения концентрации СОНь в результате ИФН за счет выделения с выдыхаемым воздухом [8]. Полагая, что через 20 мин после окончания ИФН легочная вентиляция и кислотно-основное состояние крови полностью восстанавливаются, можно утверждать, что начальная и конечная скорости выделения СО будут одинаково пропорциональны начальной и конечной концентрации СОНь. В соответствии с представленными данными (см. рисунок) скорость выделения СО до ФН и через 20 мин после таковой снижается с 0,65 до 0,50 мкмоль / мин, т. е. примерно на 20 %. Следовательно концентрация СОНь также снижается на 20 %.

В результате интегрирования скорости выделения СО по времени получается его общий объем, выводимый с выдыхаемым воздухом (≈ 0.5 мл). Полная несущая способность крови в норме для СО, также как и для O_2 , составляет ≈ 0.2 мл СО в 1 мл крови. Если общий объем крови составляет 5 000 мл, а содержание СОНЬ в крови здорового некурящего человека — 0.5 %, получается, что общий объем СО, связанный с гемоглобином, составляет 5 мл.

Таким образом можно заключить, что с выдыхаемым воздухом выводится только 10 % общего содержания СО в крови, из которых на активную фазу ФН приходится лишь 3 %. Следовательно, если концентрация СОНь падает в общем на 20 %, то недостающие 10 % логично отнести к перераспределению СО в миоглобиновый буфер в соответствии с предположением [9, 10].

Развитие спортивной медицины проявляется в разработке новых неинвазивных методов определе-

http://journal.pulmonology.ru 75

ния анаэробного порога, который является общепризнанной мерой порога физической выносливости человека и широко используется для подготовки и оценки физического состояния элитных атлетов, способных к достижению наивысших результатов мирового уровня. В одном из таких оригинальных методов, в которых использована зависимость скорости выделения СО2 с выдыхаемым воздухом от концентрации лактата в крови [15], показано, что при переходе через анаэробный порог и повышении содержания лактата избыточно образующиеся ионы водорода связываются ионами бикарбоната, а синтезируемая таким образом угольная кислота разлагается в легких на CO₂ и H₂O. В результате скорость выделения СО2 с выдыхаемым воздухом заметно возрастает, а концентрация бикарбоната в артериальной крови падает. В результате при регистрации участков перегиба зависимостей скорости выделения CO_2 и потребления O_2 от возрастающей ΦH рассчитывается анаэробный порог.

Недостатком данного метода является размытость участков перегиба, что требует сложной математической обработки экспериментальных данных. Причиной этого является сравнительно небольшое увеличение скорости выделения ${\rm CO_2}$ за счет его неметаболической составляющей.

Заключение

Полученные данные о резком увеличении (в 2,5 раза) РК СО в выдыхаемом воздухе в результате ИФН могут быть положены в основу для разработки нового неинвазивного экспресс-метода определения анаэробного порога в реальных условиях тренировочного процесса, занятий фитнесом и аэробикой. При этом отсутствует необходимость контроля скорости легочной вентиляции, а требуются только измерения концентрации СО в выдыхаемом воздухе до и после заданной ФН с предварительной задержкой дыхания. Для этого пригодны портативные электрохимические анализаторы типа Smokerlyzer® (Bedfont Scientific Ltd., Великобритания), широко используемые при контроле курения.

Литература

- 1. Coburn R.F. The carbon monoxide body stores. *Ann. N. Y. Acad. Sci. 1970; 174: 11–22.*
- Coburn R., Blakemore W., Forster R. Endogenous carbonoxide production in man. J. Clin. Invest. 1963; 42: 1172–1178.
- 3. Coburn R., Williams W., Kahn S. Endogenous carbon monoxide production in patients with hemolytic anemia. *J. Clin. Invest.* 1966; 45: 460–468.
- Hampson N. Carboxyhemoglobin elevation due to hemolytic anemia. J. Emerg. Med. 2007; 33: 17–19.
- 5. Yasser Ali, Negmi H., Elmasry N. et al. Early graft function and carboxy hemoglobin level in liver transplanted patients. *M.E.J. Anesth.* 2007; 19 (3): 513–526.
- Graham B., Mink J., Cotton D. Effects of increasing carboxyhemoglobin on the single breath carbon monoxide diffusion capacity. *Am. J. Respir. Crit. Care Med.* 2002; 165: 1504–1510.

- 7. Бабарсков Е.В. Математическое моделирование новых методов исследования диффузионной способности легких. Труды ИОФАН (Института общей физики РАН). М.: Наука; 2012; т. 68: 81–135.
- 8. Шулагин Ю.А., Степанов Е.В., Чучалин А.Г. и др. Лазерный анализ эндогенной моноокиси углерода в выдыхаемом воздухе. *Труды ИОФАН (Института общей* физики РАН). М.: Наука; 2005; т. 61: 135—188.
- Werner B., Lindahl J. Endogenous carbon monoxide production after bicycle exercise in healthy subjects and in patients with hereditary spherocytosis. Scand. J. Clin. Lab. Invest. 1980; 40: 319–324.
- Agostony A., Perzella M., Sabbioneda L. et al. CO binding to hemoglobin and mioglobin in equilibrium with a gas phase of low PO₂ value. *J. Appl. Physiol.* 1988; 65: 2513–2517.
- Sharma V., Schmidt M., Ranney H. Dissociation of CO from carboxyhemoglobin. J. Biol. Chem. 1976; 251: 4267–4272.
- 12. Mora-Rodriguez R. Influence of aerobic fitness on thermoregulation during exercise in the heat. *Exerc. Sport Sci. Rev.* 2012; 40 (2): 79–87.
- 13. Casa D., Becker M., Ganio M. et al. Validity of devices that asses body temperature during outdoor exercise in the heat. *J. Athl. Train.* 2007; 42 (3): 333–342.
- Marchant L.R. Relationship of 2,3-diphosphoglycerate and other blood parameteres to training, smoking and acute exercise. www.library.ubc.ca
- Beaver W., Wasserman K., Whipp B. A new method for detecting anaerobic threshold by gas exchange. *J. Appl. Physiol.* 1986; 60: 2020–2027.

Поступила 11.06.14 УДК [616.152.112-057:796]-074

References

- 1. Coburn R.F. The carbon monoxide body stores. *Ann. N. Y. Acad. Sci. 1970; 174: 11–22.*
- Coburn R., Blakemore W., Forster R. Endogenous carbonoxide production in man. J. Clin. Invest. 1963; 42: 1172–1178.
- 3. Coburn R., Williams W., Kahn S. Endogenous carbon monoxide production in patients with hemolytic anemia. *J. Clin. Invest.* 1966; 45: 460–468.
- 4. Hampson N. Carboxyhemoglobin elevation due to hemolytic anemia. *J. Emerg. Med. 2007; 33: 17–19.*
- 5. Yasser Ali, Negmi H., Elmasry N. et al. Early graft function and carboxy hemoglobin level in liver transplanted patients. *M.E.J. Anesth. 2007; 19 (3): 513–526.*
- Graham B., Mink J., Cotton D. Effects of increasing carboxyhemoglobin on the single breath carbon monoxide diffusion capacity. Am. J. Respir. Crit. Care Med. 2002; 165: 1504–1510
- 7. Babarskov E.V. Mathematic modeling of new methods for assessment of diffusing capacity of the lungs. In: *Collected Scientific Papers of General Physics Institute of the Russian Academy of Sciences. Moscow: Nauka; 2012; vol. 68: 81–135* (in Russian).
- 8. Shulagin Yu.A., Stepanov E.V., Chuchalin A.G. et al. Laser analysis of endogenous exhaled carbon monoxide. In: Collected Scientific Papers of General Physics Institute of the Russian Academy of Sciences. Moscow: Nauka; 2005; vol. 61: 135–188 (in Russian).
- 9. Werner B., Lindahl J. Endogenous carbon monoxide production after bicycle exercise in healthy subjects and in

76 Пульмонология 5'2014

- patients with hereditary spherocytosis. Scand. J. Clin. Lab. Invest. 1980; 40: 319–324.
- 10. Agostony A., Perzella M., Sabbioneda L. et al. CO binding to hemoglobin and mioglobin in equilibrium with a gas phase of low PO₂ value. *J. Appl. Physiol.* 1988; 65: 2513–2517.
- 11. Sharma V., Schmidt M., Ranney H. Dissociation of CO from carboxyhemoglobin. *J. Biol. Chem.* 1976; 251: 4267–4272.
- 12. Mora-Rodriguez R. Influence of aerobic fitness on thermoregulation during exercise in the heat. *Exerc. Sport Sci. Rev.* 2012; 40 (2): 79–87.
- 13. Casa D., Becker M., Ganio M. et al. Validity of devices that asses body temperature during outdoor exercise in the heat. *J. Athl. Train.* 2007; 42 (3): 333–342.
- 14. Marchant L.R. Relationship of 2,3-diphosphoglycerate and other blood parameteres to training, smoking and acute exercise. www.library.ubc.ca

 Beaver W., Wasserman K., Whipp B. A new method for detecting anaerobic threshold by gas exchange. *J. Appl. Physiol.* 1986; 60: 2020–2027.

> Reseived 11.06.14 UDC [616.152.112-057:796]-074

Информация об авторах

Бабарсков Евгений Викторович – к. т. н., ведущий научный сотрудник лаборатории функциональных и ультразвуковых методов исследования ФГБУ "НИИ пульмонологии" ФМБА России; тел.: (495) 396-53-09; e-mail: babarskov@mail ru.

Шогенова Людмила Владимировна – к. м. н., зав. лабораторией методов ингаляционной терапии ФГБУ "НИИ пульмонологии" ФМБА России; тел.: (495) 965-92-93; e-mail: Luda_Shog@list.ru

Айсанов Заурбек Рамазанович – д. м. н., профессор, зав. отделом клинической физиологии и клинических исследований ФГБУ "НИИ пульмонологии" ФМБА России; тел.: (495) 965-34-66; е-mail: aisanov@mail.ru Черняк Александр Владимирович – к. м. н., зав. лабораторией функциональных и ультразвуковых методов исследования ФГБУ "НИИ пульмонологии" ФМБА России; тел.: (495) 465-53-84; е-mail: achi2000@mail.ru Чучалин Александр Григорьевич – д. м. н., профессор, академик РАН, директор ФГБУ "НИИ пульмонологии" ФМБА России, председатель правления РРО, главный внештатный специалист терапевт-пульмонолог Минздрава России; тел. / факс: (495) 465-52-64; е-mail: chuchalin @inbox.ru

http://journal.pulmonology.ru 77