А.А.Криштафович¹, Б.М.Ариэль^{1,2}

Кисты экзокринных желез в стенках трахеи и бронхов

 1 – ФГБУ "Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии" Минздрава России: 191036, Санкт-Петербург, Лиговский пр., 2–4;

2 - Санкт-Петербургское ГБУЗ "Городское патологоанатомическое бюро": 194354, Санкт-Петербург, Учебный пер., 5

A.A.Krishtafovich¹, B.M.Ariel^{1,2}

Exocrine gland cysts in the tracheal and bronchial walls

1 - Federal Institution Saint-Petersburg Research Institute of Phthisiopulmonology, the Healthcare Ministry of Russia; Saint-Petersburg, Russia;

2 – State Institution Saint-Petersburg city bureau of pathologic anatomy; Saint-Petersburg, Russia

Summary

Aim. The aim of this study was to investigate exocrine gland cysts occurrence in the tracheal and bronchial walls of patients with chronic lung diseases. *Methods.* We examined 68 patients with lung carcinoma, pulmonary tuberculosis and chronic non-specific lung disease. The airway mucosa was visualized using an original device for powder spraying (Patent RF N 2053801) and aerosol of 5 g of bioinertial tantalum particles with a size of $\leq 1 \mu m$. X-ray images made immediately and in 24 and 48 hours after the spraying showed the tantalum particle sedimentation on the mucosa surface and in excretory ducts of the exocrine glands. A presence of "risk zones", their location, size, and borders were identified as well as the particle concentration in these zones.

Results. We have shown that multi-layer bands up to 3 mm in thickness were found just after spraying; duct dilation and retentional cysts 3-10 mm in size were observed in the exocrine glands. The number of the cyst differed between patients from 1 to 6.

Conclusion. It seems to be reasonable that these changes could be considered as different stages of cyst development in the tracheal and bronchial wall exocrine glands.

Key words: trachea, bronchi, exocrine glands, tantalum spraying, "risk zones", X-ray model.

Резюме

Обследованы больные (*n* = 68) раком легких, туберкулезом и хроническими неинфекционными заболеваниями легких. Проведена визуализация рельефа слизистой оболочки дыхательных путей с помощью оригинального прибора для напыления порошкообразных препаратов (патент РФ № 2053801) путем введения 5 г аэрозоля биоинертных микрочастиц тантала размером ≤ 1 мкм. На рентгенограммах, снятых непосредственно после напыления, а также через 24 и 48 ч после него прослежены особенности инерционного осаждения частиц тантала на поверхности слизистой оболочки и в выводных протоках экзокринных желез. Выявлены зоны риска, их локализация, площадь, границы и степень концентрации в них частиц. Показано, что непосредственно после напыления в зонах риска определяются многослойные полоски толщиной до 3 мм, а через 24 и 48 ч – расширения выводных протоков и ретенционные кисты размером 3–10 мм, число которых у разных больных составляет от 1 до 6. Данные образования представляют собой кисты экзокринных желез в стенках трахеи и бронхов на разных стадиях их формирования.

Ключевые слова: трахея и бронхи, экзокринные железы, напыление танталом, зоны риска, рентгенологическая модель.

Установлено, что существует определенная предрасположенность отдельных участков трахеи и бронхов к развитию воспалительных заболеваний и опухолей, обусловленная, прежде всего, неравномерным осаждением на слизистой оболочке этих органов повреждающих эпителий аэрогенных частиц поллютантов, табачного дыма и т. п. Известно, что на поверхности слизистой оболочки трахеи и бронхов имеются миллионы отверстий мельчайших выводных протоков экзокринных желез, где осаждаются миллиарды различных частиц, повреждающих эпителий [1]. В 95 % случаев экзокринные железы в стенке дыхательных путей являются анатомической базой для развития аденом, раковых и других заболеваний [2].

Изучение закономерностей осаждения на слизистой оболочке трахеи и бронхов поллютантов и других аэрогенных частиц проводится при помощи различных приборов и методов *in vivo* и *in vitro*, а также в экспериментах на животных и с использованием математических моделей [3]. Однако при проведении бронхофиброскопии и общепринятых лучевых методов исследования осаждение частиц на слизистой оболочке объективно не визуализируется, а зоны риска не выявляются.

В научной литературе до сих пор постоянно отмечается избирательное вовлечение определенных участков дыхательных путей при той или иной патологии. Например, в одной из последних работ речь идет о различной частоте обструктивного поражения дыхательных путей с правой (85 %) и левой (66 %) сторон, а также промежуточного (72 %) и левого главного (62 %) бронха [4]. Между тем достоверная информация о визуализации зон риска и кистообразных структур в стенке трахеи и бронхов, а также о самих зонах риска, механизмах их формирования, точной локализации, площади, границах, степени концентрации частиц на поверхности эпителия и их влиянии на экзокринные железы отсутствует. Это затрудняет раннее выявление кист и проведение дифференциальной диагностики поражений слизистой оболочки дыхательных путей, характерных для той или иной патологии.

Предпосылкой данной работы явилось очевидное допущение, что в соответствии с законами физики и аэродинамики близкие по размерам частицы, проникающие в дыхательные пути из внешней среды, будучи различными по физико-химическим свойствам, имеют при этом общее свойство — одинаковую траекторию осаждения в сложных воздуховодах [5]. Таким образом, при использовании в качестве маркера рентгеноконтрастных микрочастиц тантала в виде аэрозоля для ингаляций на рентгенограммах получается изображение общего рельефа слизистой оболочки верхних и нижних дыхательных путей, имитирующее осаждение на поверхности эпителия различных мелких частиц. Вместе с тем эта рентгенологическая модель *sui generis* позволяет не только изучить механизмы осаждения частиц на слизистой оболочке, но и выявить в ней зоны риска.

Целью и задачами исследования явились разработка методики рентгенологической визуализации зон риска и открытых кист экзокринных желез и описание их рентгеноморфологических особенностей при использовании прибора для ингаляционного введения в просвет трахеи и бронхов микрочастиц тантала.

Материалы и методы

При обследовании пациентов (*n* = 68) в возрасте 19-67 лет с различной патологией легких (хронический бронхит, бронхоэктатическая болезнь, туберкулома, фиброзно-кавернозный туберкулез, рак) на рентгенограммах у 12 (17,6%) из них в стенках трахеи и крупных бронхов были случайно выявлены открытые кисты экзокринных желез. При бронхофиброскопии на нижних стенках главных и долевых бронхов у 27 (39.7 %) больных были обнаружены устья выводных протоков экзокринных желез. Для визуализации рельефа слизистой оболочки и кист использованы рентгеноконтрастные биоинертные микрочастицы тантала размером ≤ 1 мкм в количестве 5 г. вводимые в виде аэрозоля. Введение последнего в трахею и бронхи осуществлялось через катетер под контролем рентгенотелевидения на фазе среднего вдоха. Для ингаляций аэрозоля использовался прибор для напыления порошкообразных препаратов (патент РФ № 2053801) [6], подключенный к портативному аэрозольному ингалятору ПАИ-2 (приоритетная справка № 2012147391 от 05.02.13 на изобретение "Способ рентгенологической диагностики открытых кист экзокринных желез трахеи и бронхов" [7]). Число инсуффляций, необходимых для исследования, колебалось в пределах 8–15. Рентгенография легких проводилась сразу же после напыления частиц в трахею и бронхи, а также спустя 24 и 48 ч. Осложнений, связанных с процедурой, не отмечено.

Результаты и обсуждение

В результате исследования аэродинамики и особенностей инерционного осаждения микрочастиц тантала при соударении со слизистой оболочкой трахеи и бронхов показано, что в местах делений трахеи и бронхов, т. е. там, где по законам аэродинамики возникают турбулентные завихрения, на поверхности слизистой оболочки происходит преимущественно локальное осаждение частиц в виде многослойной полоски толщиной ≤ 3 мм. Такое же осаждение отмечается и на нижних стенках главных, долевых и сегментарных бронхов, а также в межскладочных промежутках, выявляющихся на рентгенограммах в виде участков высокой оптической плотности. Предполагается, что именно в этих участках слизистая оболочка трахеи и бронхов испытывает максимальное повреждающее воздействие аэрогенных частиц, особенно при длительном воздействии (например, при табакокурении) и представляет собой зоны риска развития той или иной патологии. У 37 (54,4 %) больных на рентгенограммах, снятых сразу же после напыления, на поверхности слизистой оболочки трахеи и бронхов установлена точная локализация зон риска, их площадь, границы и степень концентрации частиц (рис. 1, 2). Схема локализации и частоты зон риска в трахее и бронхах представлена на рис. 3. Такая картина соответствует I стадии формирования кист в стенке трахеи и бронхов.

Установлено, что многослойным скоплением огромного числа различных частиц на поверхности слизистой оболочки в зонах риска блокируются устья выводных протоков, нарушается отток секрета из белковых и слизистых желез, что в свою очередь вызывает диффузное расширение их выводных протоков. Так, у 19 (27,9 %) больных через 24 и 48 ч после напыления на рентгенограммах в зонах риска были выявлены заполненные микрочастицами тантала расширенные до 3 мм выводные протоки различной

Рис. 1. Бронхограмма правого легкого (прямая проекция) больного М. 48 лет (фрагмент). Микрорельеф слизистой и "зоны риска" на бифуркации трахеи, нижних стенках правого главного, верхнедолевого и промежуточного бронхов (площадь, границы, степень концентрации частиц)

Рис. 2. Бронхограмма правого легкого (боковая проекция) больного И. 37 лет (фрагмент). Многослойное осаждение частиц на нижней стенке среднедолевого бронха (зона риска)

Оригинальные исследования

Рис. 3. Схема локализации и частота зон риска на слизистой трахеи и бронхов

формы — в виде зубьев гребня, трубчатых, булавовидных и дивертикулоподобных образований. Они локализовались на границе хрящевой и мембранозной части стенки бронхов, проходя под острым углом к поверхности слизистой оболочки бронхов, а их устья открывались на ее поверхности. Такая картина соответствует II стадии формирования кист в стенке трахеи и бронхов.

У 12 (17,1%) больных с клиническими диагнозами хронического бронхита (в 3 случаях), бронхоэктазов (в 2 случаях), фиброзно-кавернозного туберкулеза (в 5 случаях) и туберкуломы (в 2 случаях) через 24 и 48 ч после напыления в стенках трахеи и крупных бронхов определялись открытые кисты экзокринных желез (рис. 4). Они локализовались в тех участках, где к стенкам бронхов прилежали паратрахеальные, бифуркационные и бронхопульмональные лимфатические узлы. При бронхофиброскопии у всех обследованных в трахее и крупных бронхах были выявлены устья расширенных выводных протоков, что соответствует III стадии формирования кист в стенке трахеи и бронхов.

Рентгенологическая картина кист желез в стенках трахеи, главных и долевых бронхов характеризовалась наличием сформированных воздушных полостей округлой и овальной формы с четкими ровными стенками, открывающихся в просвет дыхательных путей. Кисты локализовались в трахее (у 1 больного), главных (у 6), промежуточном (у 2) и долевых (у 3 пациентов) бронхах. Их размеры колебались от 3 до 10 мм, количество – от 1 до 6 (рис. 5, 6). Кисты

Рис. 4. Бронхограмма левого легкого (прямая проекция) больного С. 35 лет (фрагмент). На нижней стенке язычкового бронха в зоне риска определяются 3 заполненные частицами тантала кисты размером 4, 8 и 5 мм, узкий выводной проток располагались продольно на границе мембранозной и хрящевой слоев стенок трахеи и бронхов. Фиброзные изменения в зоне локализации кист установлены у 3 больных туберкулезом и у 2 пациентов с бронхоэктатической болезнью.

Заполнение кист желез осуществлялось путем диффузии частиц тантала через расширенные выводные протоки с осаждением их на стенке кисты в результате броуновского движения. При этом контурное заполнение кист частицами тантала отмечено у 8 больных, тугое — у 4. Отмечено, что открытые кисты желез формируются из закрытых (ретенционных) кист при удалении их содержимого в результате рефлекторного сокращения мышц в стенке бронха, выдавливающих секрет в просвет, с последующим их заполнением воздухом. При этом в отличие от дивертикулов в стенках трахеи и бронхов ширина протоков и форма кист изменяется, что отчетливо видно при исследовании рентгенограмм через 24 и 48 ч после напыления.

В силу анатомо-топографического строения и законов аэродинамики (завихрения, соударение) слизистая оболочка трахеи и крупных бронхов наиболее подвержена повреждающему воздействию аэрогенных частиц поллютантов, табачного дыма и т. п. в зонах риска. В таких условиях длительная (хроническая) задержка микрочастиц на слизистой оболочке в виде толстых слоев может служить фактором (наряду с воспалением, фиброзом и т. п.), способствую-

Рис. 5. Бронхограмма правого легкого (прямая проекция) больного Л. 49 лет (фрагмент). Киста промежуточного бронха в зоне риска диаметром 8 мм, широкий выводной проток

Рис. 6. Трахеограмма (прямая проекция) больного Р. 53 лет (фрагмент). Поликистоз на левой стенке трахеи в зоне риска на границе хрящевой и мембранозной части (размер кист – 3–10 мм)

http://www.pulmonology.ru

щим развитию гипертрофии слизистых желез в стенках трахеи и крупных бронхов.

Отличие открытых кист желез от гипертрофированных желез состоит в том, что первые представляют собой мелкие полости, заполненные воздухом, с характерной для кистозных образований рентгенологической семиотикой (кольцевидная тень, сформированная равномерная по толщине стенка, округлая или овальная форма). Гипертрофированные железы и протоки чаще заполнены секретом, препятствующим проникновению (диффузии) в них микрочастиц тантала.

Таким образом, гипертрофированные железы, как и открытые кисты без напыления, на фоне перибронхиальных воспалительных и фиброзных изменений не получают отображения при томографическом исследовании трахеобронхиального дерева. Однако в отличие от гипертрофированных желез кисты становятся отчетливо видимыми на рентгенограммах при проникновении в полости через выводные протоки даже малого количества частиц тантала при их контурном заполнении. Отличие кист желез в стенках трахеи и бронхов от врожденной патологии (дивертикулы и т. п.) легко прослеживается при динамическом наблюдении через 24 и 48 ч после напыления и проявляется на рентгенограммах изменением формы кист и ширины выводных протоков.

Реальность существования кист в стенках трахеи бронхов подтверждается морфологическими данными. В настоящее время собственные наблюдения такого рода отсутствуют, однако в работах [8–10] описана их микроскопическая структура у больных фиброзно-кавернозным туберкулезом легких.

Заключение

В стенках трахеи и крупных бронхов существуют зоны риска, где развиваются кисты экзокринных желез. Они представляют собой депо, в котором длительно задерживается содержимое дыхательных путей (в т. ч. токсичные частицы, канцерогены, возбудители инфекций и т. п.) и откуда содержимое бронхов кратчайшим путем попадает в другие отделы дыхательных путей.

Кисты желез в стенке трахеи и крупных бронхов представляют собой анатомическую базу для развития инфекционной, опухолевой и другой патологии.

Осаждение микрочастиц тантала в зонах риска, кистах стенок трахеи и крупных бронхов является эталонной рентгенологической моделью для изучения физиологии взаимодействия аэрогенных микрочастиц различной природы со слизистой оболочкой дыхательных путей.

Литература / References

 Сапин М.Р., Никитюк В.Б., Шадлинский Д.Б., Мовсумов Т.Н. Малые железы пищеварительной и дыхательной систем. Элиста: АПП "Джангар"; 2001. / Sapin M.R., Nikityuk V.B., Shadlinskiy D.B., Movsumov T.N. Small Secretory Glands of Digestive and Respiratory Systems. [Malye zhelezy pishchevaritel'noy i dykhatel'noy system]. Elista: APP "Dzhangar"; 2001 (in Russian).

- Hasleton H.S., ed. Spencer's Pathology of the Lung. 5th ed. McGraw-Hill; 1996.
- Крюков А.И., Кирасирова Е.А., Романенко С.Г., Елисеев Е.В. Экспериментальная модель для определения метода и режима ингаляционной терапии. Вестник оториноларингологии. 2008; 6: 42–44. / Kryukov A.I., Kirasirova E.A., Romanenko S.G., Eliseev E.V. An experimental model for choosing the method and the regimen of inhalation therapy. Vestnik otorinolaringologii. 2008; 6: 42–44 (in Russian).
- Goussard P., Gie R.P., Kling Sh. et al. Bronchoscopic assessment of airway involvement in children presenting with clinically significant airway obstruction due to tuberculosis. Pediatr. Pulmonol. 2013; 48: 1000–1007.
- Федорович Г.В. Роль инерционного механизма в процессе очистки воздуха в легких от аэрозольных частиц. Пульмонология. 2013; 2: 114–118. / Fedorovich G.V. A role of an inertial mechanism for aerosol particles clearance of the lungs. Pul'monologiya. 2013; 2: 114–118 (in Russian).
- 6. Криштафович А.А., Рабинкин В.Д., Жуков С.Я. Прибор для ингаляций порошкообразными препаратами. Патент РФ № 2053801. МПК А 61 В 6/00. / Krishtafovich А.А., Rabinkin V.D., Zhukov S.Ya. An Inhalational Device for Powder Drugs. Patent RF № 2053801. MPK A 61 V 6/00 (in Russian).
- 7. Криштафович А.А., Кривохиж В.Н. Приоритетная справка № 2012147391 от 05.02.13 на изобретение "Способ рентгенологической диагностики открытых кист экзокринных желез трахеи и бронхов". ГБОУ ВПО СПбГПМА Минздравсоцразвития России; 2013. / Krishtafovich A.A., Krivokhizh V.N. Certificate of Acceptance № 2012147391 "A Radiological Method of Exocrine Gland Cysts DIagnosis in Trachea and Bronchi". ["Sposob rentgenologicheskoy diagnostiki otkrytykh kist ekzokrinnykh zhelez trakhei i bronkhov"]. Russia; 2013 (in Russian).
- Струков А.И. Формы легочного туберкулеза в морфологическом освещении. М.: Издательство АМН СССР; 1948. / Strukov A.I. Pulmonary Tubersulosis: Morphologic Aspects. [Formy legochnogo tuberkuleza v morfologicheskom osveshchenii]. Moscow: AMN SSSR; 1948 (in Russian).
- Струков А.И., Соловьева И.П. Морфология туберкулеза в современных условиях. М.; 1986. / Strukov A.I., Solov'eva I.P. Current Tuberculosis Morphology. [Morfologiya tuberkuleza v sovremennykh usloviyakh]. Moscow; 1986 (in Russian).
- Биркун А.А. Неспецифические процессы при туберкулезе легких. М.; 1971. / Birkun А.А. Non-specific Pathology in Pulmonary Tuberculosis. [Nespetsificheskie protsessy pri tuberkuleze legkikh]. Moscow; 1971 (in Russian).

Информация об авторах

Криштафович Адольф Адольфович – д. м. н., ст. научный сотрудник, научный консультант отдела лучевой диагностики ФГБУ "СПб НИИФ" Минздрава России; тел.: (812) 772-13-60; е-mail: kri-adolf@yandex.ru Ариэль Борис Михайлович – д. м. н., профессор, член консультативнометодического экспертного совета патологоанатомической службы Санкт-Петербурга при СПб ГБУЗ "Городское патологоанатомическое бюро"; тел.: (812) 513-60-98; e-mail: arielboris@rambler.ru

> Поступила 17.03.14 © Криштафович А.А., Ариэль Б.М., 2014 **УДК 616.22/233-018.25-091**