позволяет косвенно судить о состоянии липидных структур легких, в процессе перехода остротекущей формы пневмонии в затяжную. Установлена возможность прогнозирования развития затяжной формы заболевания путем определения процентного стеариново-олеинового показателя в экспирате.

ЛИТЕРАТУРА

 Александров О.В., Добрынина О.В., Севрунова О.А., Ежова И.С., Григорьев С.П. О методе исследования легочного сурфактанта в конденсате паров выдыхаемого воздуха // Тер. арх.— 1992.— № 10.— С.105.

 Гельцер Б.И., Хасина М.И., Собина А.И. Взаимосвязь липидного состава экспиратов и вентиляционной функции легких у больных острой пневмонией // Там же.— 1990.—

№ 12.— C.20—23.

 Муромский Ю.А., Гукасян Э.А., Семиволков В.И. и др. Патогенез и лечение гнойных заболеваний легких // Хирургия.— 1988.— № 12.— С.12—18.

4. Разин А.С., Козлова Р.И., Филонов В.К. Фосфолипиды при неспецифических заболеваниях легких / / Сов. мед.— 1986.— № 7.— С.93—95.

 Сидоренко Г.И., Зборовский М.Н., Левина Д.И. Атравматический метод исследования поверхностно-активных свойств легкого (сурфактанта): Метод. рекомендации.— Минск, 1984.— С.11.

6. Сильвестров В.Л. Затяжные пневмонии. — Л., 1981. — С.280.

7. Сильвестров В.П., Федотов П.И. Пневмония.— М.: Медицина, 1987.— С.248.

 Синяк К.М., Оргель М.Я., Крук В.И. Метод приготовления липидов крови для газохроматографического исследования // Лаб. дело.— 1976.— № 1.— С.37—41.

9. *Чучалин А.Г.* Пульмонология — практическая врачебная специальность // Тер. арх.— 1988.— № 3.— С.3—9.

 Юлдашев К.Ю., Комилов М.К., Махмудова З.У., Ирмухамедов Р.А. Микроциркуляция, гемокоагуляция и фосфолипиды крови при острой пневмонии // Там же.— 1987.— № 3.— С.88—91.

 Holm B., Notter R. Effects of hemoglobin and cell membrane lipids on pulmonary surfactant activity // J. Appl. Physiol. — 1987.—

Vol.63, № 4.— P.1434—1442. 12. Metcalf L.D., Schmits A.A. // Anal. Chem.— 1966.— Vol.38, № 3.— P.514.

 Folch J., Lees M., Sloane-Stanley G.H. A simple method for the isdation and purification of total lipids from animal tissue // J. Biol. Chem.— 1957.— Vol.226, № 1.— P.497—504.

Поступила 05.05.93.

© КОЛЛЕКТИВ АВТОРОВ, 1994

УДК 616.831-001-06:616.24-005.98

Г.Л.Серватинский, С.С.Решетников

МЕХАНИЗМ ОТЕКА ЛЕГКИХ ПРИ ЭКСПЕРИМЕНТАЛЬНОЙ ЧЕРЕПНО-МОЗГОВОЙ ТРАВМЕ

Государственный институт усовершенствования врачей, Российский нейрохирургический институт имени проф. А.Л.Поленова, г. Санкт-Петербург

THE MECHANISM OF PULMONARY EDEMA DURING EXPERIMENTAL CRANIOCEREBRAL TRAUMA

G.L. Servatinskiy, S.S. Reshetnikov

Summary

During experimental craniocerebral trauma, the hemorrhagic character of neurogenic pulmonary edema forces the impairments of lungs that is important in process of pathogenetical interpretation.

Резюме

Геморрагический характер нейрогенного отека легких при экспериментальной черепно-мозговой травме усиливает легочные повреждения, что должно учитываться при расшифровке их патогенеза.

Быстрое, а порой молниеносное развитие нейрогенного отека легких (НОЛ) приводит к летальному исходу более чем в 90% случаев [4]. В возникновении НОЛ существенное значение имеет увеличение гидростатического давления в системе микроциркуляции и повышение проницаемости альвеолярно-капиллярной мембраны, что приводит к увеличению фильтрационной поверхности и процессов транссудации в легких [5,9]. Известно, что активными медиаторами легочной гипертензии являются катехоламины, содержание которых

резко повышается в течение секунд при повреждениях ЦНС [3]. Давно замечена также выраженность геморрагий в легких при травме головного мозга [1].

Целью настоящей работы явилось уточнение связи между содержанием катехоламинов в крови, оттекающей от головного мозга, выраженностью НОЛ и некоторых его морфологических особенностей при экспериментальной черепно-мозговой травме (ЧМТ).

Четыре серии опытов выполнены на базе НИО экспериментальной пульмонологии СПбГИДУВа на

118 нелинейных белых крысах у здоровых животных (контроль) и с моделью ЧМТ. В опытах использовались животные, адаптированные к лабораторным условиям без признаков заболеваний. Моделирование ЧМТ проводилось по стандартизированной методике путем нанесения дозированного удара в центральнотеменную или височные области черепа свободно падающим грузом (тупая травма). Количественные параметры травматического воздействия изменялись путем уменьшения или увеличения высоты падения груза, площади соударения. В зависимости от поставленных задач контрольных и оставшихся живыми животных забивали декапитацией на различных сроках наблюдения. Газовый состав — рО2, рСО2 и уровень рН артериальной крови исследовались на аппарате "Микроаструп ВМ5 МК2" фирмы "Радиометр" (Дания); уровень гемоглобина (Hb) и оксигемоглобина (HbO₂) — на гемоксиметре "OSM-2B" (Дания). Для исследования показателей pO2, pCO2, pH, Hb, HbO2 пробы крови брались из катетеризированной сонной артерии в исходном состоянии и через 3-15 минут после ЧМТ. Бронхоальвеолярный лаваж проводился сразу же после гибели животного через трахеостому путем 3-кратного промывания легких 3 мл изотонического раствора хлорида натрия; наличие и количество эритроцитов подсчитывали по общепринятой методике в камере Горяева. Степень гидратации легких рассчитывали по отношению массы влажной ткани к массе сухой ткани (Рвл/Рсух). Легкие извлекались сразу же после гибели животных, обсушивались фильтровальной бумагой, затем кусочек ткани взвешивался на торзионных весах и помещался в термостат с температурой воздуха 70°C на 10 суток до полного высушивания, после чего он вновь взвешивался. Показатель отношения в пределах 4,0-4,5 - отсутствие отека легких, 4,5—5,0 — интерстициальный отек, выше 5,0 — альвеолярный отек легких. Адреналин и норадреналин в плазме крови из ретроорбитального венозного синуса определялся модифицированным флуориметрическим триоксидиновым методом [2]. Морфологическое исследование легких проведено у 50 животных, включая контроль — 5.

Таблица

Изменения показателей газового состава и гемоглобина артериальной крови при экспериментальной ЧМТ (n=20, $M\pm m)$

Показатели	Контроль	ЧМТ	Изменение показателя в % относительно контроля	P
рН	7,43±0,02	7,31±0,01	98	<0,001
рСО2, мм рт.ст.	49,9±2,7	64,4±3,1	129	<0,001
рО2, мм рт.ст.	102,3±3,1	53,0±3,2	52	<0,001
Hb, г/л	$136,3 \pm 6,1$	150,0±4,6	110	>0,05
HbO ₂ , %	$92,9\pm0,9$	47,8±2,0	46	<0,001
Р _{вл} /Р _{сух}	4,4±0,2	$6,1\pm0,2$	138	<0,001

Для световой микроскопии легкие фиксировались в 10% нейтральном формалине при температуре 50-60°С для предотвращения вымывания отечной жидкости. Кусочки вырезались через все доли каждого легкого, включая прикорневые зоны. Парафиновые срезы окрашивались гематоксилином и эозином, по Маллори, на фибрин по Шуенинову, реактивом Шиффа, на эластику по Вейгерту. Для электронной микроскопии кусочки из субплевральных и прикорневых зон фиксировались в 2,7% растворе глутаральдегида на какодилатном буфере с последующей постфиксацией в 1% растворе двуокиси осмия, заливка в эпон-аралдит; срезы готовились на ультратоме LKB-III, препараты исследовались в электронном микроскопе ПЭМ-100. Статистическая обработка результатов проведена с использованием критерия Стьюдента (р≤0,05).

60% животных погибли в первые 30 минут посттравматического периода на фоне развития альвеолярного отека легких. В более поздний период, вплоть до конца первых суток наблюдения отек легких развился

у 20% животных.

Эритроциты в лаважной жидкости в контроле отсутствовали. У крыс, погибших в первые 30 минут после ЧМТ, количество эритроцитов составило $7.4\pm1.8\cdot10^{12}/$ л, к концу суток $2.7\pm1.3\cdot10^{12}/$ л. Степень гидратации легких в первые 30 минут после ЧМТ увеличилась в 1,3 раза.

Все животные в этой серии экспериментов погибли через 15-30 минут после травмы на фоне выраженного альвеолярного отека легких. Результаты представлены в таблице.

Из таблицы видно, что после ЧМТ имеется нарушение кислотно-основного состояния, снижение рН до 7,31 в среднем. Насыщение артериальной крови кислородом снизилось почти в 2 раза, на 29% повысилось напряжение СО2. Достоверно увеличилось количество гемоглобина крови, что отражало гемоконцентрацию, характерную для отека легких; степень гидратации легких возросла в 1,4 раза.

В контрольной группе концентрация норадреналина в плазме венозной крови была 3,9±0,6 нг/мл, адреналина — 2,0±0,2 нг/мл, сухой остаток легких — 4,5±0,1. После ЧМТ содержание норадреналина в плазме крови возросло до 9,6±1,0 нг/мл, то есть в 2,5 раза, адреналин не определялся, по-видимому, из-за очень низкой концентрации его; сухой остаток легких составил $5,3\pm0,3$.

Легкие контрольных животных макро- и микроскопически не изменены, розовые с поверхности и на разрезах, воздушные, умеренно кровенаполнены. У 7 крыс, погибших в течение первой минуты после ЧМТ, и у 8 забитых к концу первых суток наблюдения макро- и микроскопические изменения в легких минимальные и характеризуются очаговым полнокровием сосудов всех калибров, небольшими очаговыми дистелектазами, в единичных препаратах отмечался интерстициальный отек — расширение периваскулярных щелей с выходом из сосудистого русла в интерстиций четко окрашенных эритроцитов, в некоторых мелких венах и венулах в субплевральных отделах агрегация эритроцитов.

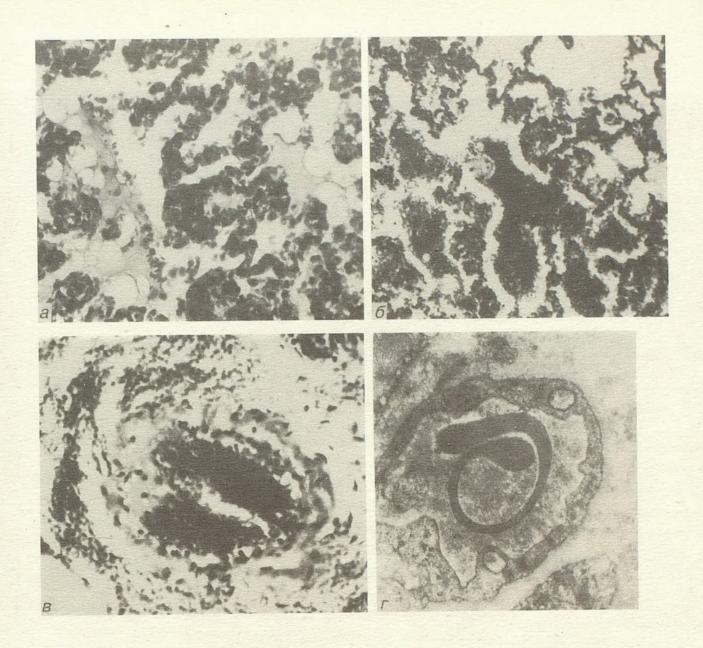


Рис. Микроскопические изменения в легких при экспериментальной черепно-мозговой травме.

а — пенистая белковая жидкость в респираторных отделах легкого, смещанная с эритроцитами, дистелектаз, стаз крови в микроциркуляторном русле. ×400; б — компактные геморрагии в респираторной бронхиоле и альвеолах легкого. ×200; в — резко выраженное расслоение стенки артерии, периваскулярное кровоизлияние. ×400; г — необычная деформация эритроцита в капилляре респираторного отдела легкого. ×16 000. а—в — окраска гематоксилином и эозином.

У остальных животных (66,7%) изменения в легких резко выражены. Макроскопически легочная плевра с очаговым отеком, особенно в прикорневых зонах и междолевых щелях, с множеством полиморфных геморрагий, которые нередко захватывают всю долю легкого. Легочная ткань темно-вишнево-красная, полнокровная, с поверхности разрезов стекает пенистая красноватая жидкость, воздушность снижена из-за дистелектазов и обширных геморрагий. Микроскопически на фоне ателектазов и дистелектазов очаги острой альвеолярной эмфиземы, резко выраженное полнокровие сосудов всех калибров со стазами в микроциркуляторном русле, а также в более крупных сосудах, во многих из них белковые или белково-клеточные микроагрегаты, нередко обтурирующие про-

свет или фиксированные на эндотелии. В отдельных венах и венулах повышенное количество клеток белой крови, тенденция к краевому стоянию их, лейкостазы. Выражен интерстициальный отек с кровоизлияниями разной интенсивности. Альвеолярный отек очаговый, белковая жидкость в респираторных и нередко в воздухопроводящих отделах имеет пенистый вид, смешана с эритроцитами (рис.,а). Лимфатические щели периваскулярно и в междольковых прослойках содержат белковую жидкость и эритроциты. Обширные кровоизлияния в респираторных и воздухопроводящих отделах (рис.,б). В альвеолах зачастую среди отечной жидкости и эритроцитов обнаруживаются обрывки десквамированного бронхиального эпителия. Обращает внимание изменение стенок мелких артерий

и вен. Многие из них заметно утолщены, гомогенизированы за счет пропитывания белковой жидкостью, неравномерно оксифильны, нередко разрыхлены или расслоены (рис.,в). Эндотелий таких сосудов с резко гиперхромными ядрами, часто слущен в просвет, внутренняя эластическая мембрана выглядит набухшей, фестончатой.

При электронной микроскопии в капиллярах легкого базальная мембрана с "размытыми" контурами, в местах контакта соседних эндотелиальных клеток во многих полях зрения видны щели, порой значительных размеров. Цитоплазма эндотелия неравномерной электронной плотности, с усиленным пиноцитозом и множественными пиноцитозными вакуолями. Эритроциты в просвете капилляров часто выглядели необычно

деформированными (рис.,г).

Полученные результаты свидетельствуют о том, что при экспериментальной ЧМТ отек легких у большинства животных развивается уже в первые минуты посттравматического периода на фоне выраженного усиления сосудистой проницаемости и дисбаланса биологически активных веществ в крови, в частности катехоламинов. Нарушение проницаемости легочных капилляров и развитие отека легких в связи с дисбалансом старлинговых факторов при повышении давления в легочных сосудах ряд исследователей называют "гемодинамическим ударом" [7,8]. Не умаляя значения этого фактора в патогенезе НОЛ, есть основание полагать, что при экспериментальной ЧМТ в легочных сосудах быстро развиваются структурные изменения в виде десквамации эндотелия, расслоения стенки, что можно называть дезорганизацией их строения. Это, на наш взгляд, еще более способствует фильтрации в интерстиций не только плазмы, но и форменных элементов крови. Не исключено, что такие изменения в сосудах малого круга кровообращения являются следствием спазма их при значительном повышении концентрации норадреналина в крови при ЧМТ. В этих случаях наиболее ярко проявляется его констрикторное действие как нейромедиатора, осуществляющего дистантный эффект [3]. По-видимому, при развитии НОЛ имеет значение не только

"гемодинамический удар", но и своего рода "удар" по

структурной основе сосудов легкого.

Ранее было установлено, что в процессе пенетрации стенки капилляров эритроцит деформируется [6]. Вполне вероятно, что усиленному диапедезу эритроцитов способствует как нарушенная проницаемость сосудистой стенки, так и необычная деформация их уже в просвете легочных капилляров, связанная, возможно, с-повреждением мембраны их и изменением коллоидно-осмотического взаимодействия. Последнее, однако, требует дополнительных исследований.

Быстрое развитие и ярко выраженный геморрагический характер НОЛ на фоне дисбаланса биологически активных веществ в крови при экспериментальной ЧМТ по всем данным усиливает альтерирующее действие на структуру и функции легких, что необходимо учитывать при расшифровке патогенеза легочных осложнений при черепно-мозговых повреждениях.

ЛИТЕРАТУРА

1. Саркисов Д.С. О влиянии нарушений морфологии и функции головного мозга на течение и исходы экспериментальной пневмонии. — Л., 1956.

2. Стабровский Е.М., Коровин К.Ф. Методы определения адреналина, норадреналина, их предшественников и

метаболитов. — Л., 1978.

3. Beckman D.L., Lams S.G. Circulation catecholamines in cate before and after iethal head injury // Proc. Soc. Exp. Biol. Med.-1979.— Vol.160.— P.200—202

Casey W.F. Neurogenic pulmonary edema // Anaesthesia.— 1983.— Vol.38, № 10.— P.985—988.

Colice G.L. Neurogenic pulmonary edema // Clin. Chest Med.— 1985.— Vol.6, № 3.— P.473—489.

6. Columella F. Traumatic Brain Laceration as a new and independent Nosological entity of neurosurgical pathology // Neurocirugia. (Satiago, Chile). — 1973. — Vol.31, № 1-2. — P.9-26.

7. Graf C.J., Rossi H.P. Pulmonary edema and central nervous system: a clinicopathological study // Surg. Neurol. — 1975. — Vol.4, № 3.— P.319—325.

8. Hakim T.S., Minnear F.L., Van der Zee H., Malik A.B. Adrenoreceptor control of lung fluid and protein exchange // J. Appl. Physiol. — 1981. — Vol.51. — P.68 — 72.

9. Oyarrum M. Pulmonary edema. Fluid balance in the lung // Rev.

Med. Clin.— 1982.— Vol.110, № 3.— P.296—300.

Поступила 14.12.92.